Светящийся куб из светодиодов. Светодиодный куб. Led куб – что нужно для самостоятельной сборки

14 января 2016 в 13:42

Светодиодный куб 8х8х8, интересно и красиво

  • Схемотехника

Введение

Идея эта в голову пришла спонтанно, до осени этого года я и догадываться не мог, что люди занимаются чем-то подобным в жизни. На самом деле про то, что такие «кубики» существуют, рассказал преподаватель схемотехники и предложил взять данную тему в качестве курсового.

Забегая вперёд, хочется сказать о том, что не нужно думать об объёме работы как о чём-то колоссальном. Напротив, делать совсем пришлось совсем немного, а вот те, кто думают: " Ха, я сделаю это за пару дней", - приготовьтесь к обратному. Да и сам процесс вовлекает в работу не хуже написания какого-нибудь программного кода…

Наблюдая за маленькими работами, размером 3х3х3, и 4х4х4, и 5х5х5, я потихоньку понимал, что чем больше - тем лучше.

Milestone #1:

Если вы до этого не работали с паяльником, для начала осознайте что нужно будет припайвать все ножки светодиодов, это 2*512, не так-то мало. Поэтому потренируйтесь на каких-нибудь кошках.


В интернете полно инструкций на эту тему. Но от начала до конца я увидел кажется только на instructables.com, и сразу скажу, как-то там слишком подробно в плане всего. Использовал лично я компонентов в раза два меньше. Естественно комплектация получилась попроще. В итоге для нашей маленькой игрушки нам понадобится:

512 светодиодов (6$ - aliexp)
- 5 специальных микросхем для светодиодов STP16CPS05MTR (9$ - aliexp)
такие детали выгоднее брать партиями естественно
- 8 BD136 pnp транзисторов (отечественные аналоги также подойдут)
- 5 1кОм резисторов (рабочая мощность 2 W)
- 5 10мкФ конденсаторов (рабочее напряжение 35-50 V)
- соединительные провода (около 10 м вышло, учитывая неудачи), припой и все, кто по-кайфу

Время приступить к изготовлению макета

Берем дрель, линейку, делаем сеточку 8х8 (главное не сделайте 8х9, как я) на чём угодно, будь то пенопласт, деревянная доска или что-то ещё. И аккуратно сверлим дырочки для светодиодов.

Milestone #2:

Ключевое слово - «аккуратно», пару миллиметров влево или вправо, и у вас уже будет кривой куб в итоге.


После того, как этот шаг выполнен, вставляем светодиоды в ячейки и соблюдаем следующее правило:

А) Все аноды должны быть слева, а катоды справа. Или наоборот. Как вам удобнее.
б) Самый первый ряд сверху должен содержать светодиоды под углом:

По такому принципу соединяем катоды (-). Там, где отмечено пунктиром - прикрепите какую нибудь проволоку, чтобы слой держался с двух сторон крепко.

Держа эту нежную прослоечку, вам может показаться, что она вот-вот может развалиться, но на самом деле, когда вы начнёте скреплять слои, потом эту конструкцию можно будет спокойно бросать на пол, и скорее всего ничего не развалится.

Итог первого слоя


Перед тем, как начинать припаивать второй слой, нужно взять и загнуть все аноды следующим образом:

Соединяем несколько слоёв


Milestone #3:

Новички, пожалуйста, используйте специальную паяльную пасту (флюс), если бы имеете дело с проводами, таким образом сохраните себе очень много нервов (не то, что я в первый раз).

Когда ты немножко устал


Итак, припаяв 64 провода к анодам, которые у нас получились «на дне», можно приступать к самой электронной схеме.

Видим, что выходы наших микросхем по обе стороны переходят в общие аноды колонок куба, а в 5-ой мы мультиплексируем через транзисторы управление слоями. Вроде бы все не сложно: подаётся сигнал на определённые колонки и слои, и мы получаем пару светящихся светодиодов.

На деле это работает так:

Имеется 3 входа: тактирование, данные и защёлка. Когда отработалось 8 битов, идет защелка, и данные помещаются в регистр. Т.к. у нас микросхемы выполнены на сдвиговых регистрах, то для того, чтобы отрендерить 1 раз наш кубик разными битами информации, нам нужно записать 1 байт (8 битов с номерами слоев, на которые подавать напряжение), далее будут идти пустые данные, т.к. для пятого чипа у нас левые пины ни к чему не подсоединены. Далее мы записываем по 1 байту для каждой из группы из восьми колонок. Соответствующий бит будет определять, которая колонка должна гореть, и где это пересекается с активированным слоем, светодиод на их пересечении и должен получить напряжение.

Ниже представлена схема из даташита разработчика для общего ознакомления:

Как мы будем записывать 1 байт данных:

Void CUBE::send_data(char byte_to_send){ for(int i = 0; i < 8; i++){ if(byte_to_send & 0x01< Использовал Arduino UNO (взял попользоваться), но здесь подойдет вообще любая модель. И nano, и mini, поскольку используются только 3 цифровых входа и vcc + gnd.

Отдельно позаботьтесь о блоке дополнительного питания (я использовал адаптер 12V 2A), для отображения всех слоев кажется ток именно такой силы и нужен.

Весь исходный код в виде скетча для Arduino будет

Доброго времени суток, друзья и гости сайта "Радиосхемы"! Закончил свой второй светодиодный куб. Схему и печатку нашел в просторах интернета, уже не помню где точно. После , хотелось чего-то побольше, посолиднее что-ли. Как раз и подвернулась эта схемка. На реализацию с закупкой деталей ушло около месяца. Первый запуск производился, как всегда, в навесном виде, собранным кое-как. Часть не работала, о корпусе и речи не было, на один этаж светодиодов вообще не хватило и пока так оставил на тот момент, просто хотелось посмотреть на него перед новым годом, а это было 30 декабря 00:01 на часах. Не горели два ряда по 8 этажей светодиодов и 4 светодиода горели постоянно. Недавно отремонтировал, проблема оказалась в том, что был обрыв дорожек на одной микросхеме (видимо когда травил, там тонер был поцарапан или волосок какой попал под него), а проблема с горящими постоянно светодиодами была исправлена путем проверки ключей управления с их обвязкой (не хотел покупать в DIPe транзисторы, купил в корпусе sot-23, при компактной разводке необходимо было использовать перемычку, smd резистор 0 сопротивления, 0805 типоразмера моего любимного, ну и закоротил этой перемычкой на дорожку между двумя транзисторами). При пайке самого куба был обнаружен недочет - ножки светодиодов коротковаты, а хотелось большой куб, ну и пришлось надставлять каждую ножку наращивать - сколько же терпения потребовалось... Led cube имеет всего 512 светодиодов по 2 ножки = 1024. Был коробок обрезков от резисторов и конденсаторов, его весь израсходовал. Потом проволока луженая пошла, ее несколько метров ушло, теперь ни одной ножки нет отрезанной. Но это были еще мелочи. Потом нужно было соединять этажи между собой, вот тут ушло около 2 дней только на это. При этом выявляются все кривые моменты, которые были незначительны при сборке этажей. Ну ничего, выровняли. Два дня были затрачены на изготовления корпуса из пластика от холодильника, ну там все крепления для платы, крепеж крышки, индикация, панель управления... Проводки на плате были аккуратно примазаны селиконовым герметиком, на случай "а мало ли чё". Для пайки этажей в ДСП сверлил небольшие отверстия, чтобы ставить светодиоды, а потом паять. Так удобнее, но потом понял, что надо было отдельно линиями паять, а не этажами - так куда проще.

Схема LED CUBE

Общий вид:

Покрасил короб куба в матовый цвет.

Лицевая и тыльная панель:

Внутренности с бородой из 72 проводов:

Провода рядов светодиодов приклеенные силиконовым герметиком:

Площадка-крепление для платы с противоположной стороны относительно входа питания и панели индикации с кнопками:

Панелька с кнопками управления кубом и весь вид в сборке:

Выявил еще один недостаток: светодиоды нужно было покупать матовые, а не сверхъяркие, а то по глазам чуть бьет. Фьюзы для ПониПрога далее, вроде шил Khazama"ой, ориентируюсь на Spienб так что даже не запоминаю от чего выкладываются фьюзы.

Прошивка и файл Eeprom"a, печатная плата и всё остальное для куба в архиве . Шил сначала память, потом прошивку, и про фьюзы не забываем. Видео снимал ночью. На одном виде led cube стоит на коробе, а на втором перевернут вверх-ногами.

Видео LED CUBE

В данном кубе также имеется COM-порт для подключения к компьютеру, чтобы через программу можно было самостоятельно послойно создавать фигуры, а потом проиграть их все вместе. Можно и без куба их создавать, потом подключить и увидеть, а можно в режиме реального времени зажигать определенные светодиоды и видеть их. Правда не пробовал еще так, надо провод поискать и компьютер с разъемом таким, или переходник под USB. Позже смотрел многоцветные светодиоды, думал их заказать, но на куб наверное они не самый лучший вариант, они ведь мигают в определенной последовательности, а там не знаю как получилось бы... В общем заказал RGB 100 штук, побалуюсь потом... Автор проекта DGR .

Обсудить статью LED CUBE

В данной статье я пошагово расскажу об изготовлении 3D LED куба, с размерностью 3х3х3. Управление LED осуществляется при помощи контроллера Arduino.

Отличительной особенностью данного проекта от других является:

Небольшое число дополнительных компонентов, подключается напрямую к Arduino без использования различных мультиплексоров и т.п.

Простая для повторения принципиальная схема с множеством фотографий и разьяснений.

Использование универсальной библиотеки, что значительно упрощает написание программы.

Итак, нам понадобится:

  • макетная плата
  • 3 NPN транзистора (2N2222, 2N3904, BC547 и т.п.)
  • 12 резисторов (~220 Ом и 22 кОм)
  • 13 коннекторов (папа или мама)
  • 27 светодиодов (LED)
  • соединительные провода


А сначала, немного видео работы устройства:

Итак, посмотрели видео? Ну а теперь поехали!

Шаг 1. Подготовка LED

Этот шаг практически ни чем не отличается от предыдущего проекта , за исключением соответственно размерностью. Куб 4х4х4 более сложен, т.к. требует введения в схему дополнительный элементов. У нас же куб будет с 3 уровнями, по 9 LED в каждом.

В каждом наборе из 9-ти LED, все катоды соединены между собой, т.е. подключены по схеме с общим катодом (минус). Далее, наборы мы будем называть "уровнями". Каждый LED соединен анодом с LED другого уровня (нижестоящими или вышестоящими). Далее, по тексту я буду называть это колоннами, т.е. в одной колонне соединено 3 светодиода анодами, а на одном уровне соединено 9 LED катодами.

Как видно на фото выше, для изготовления куба я использовал старый шаблон от проекта 4х4х4 светодиодного куба. Отверстия в дереве просверлены под головку светодиода, расстояние между отверстиями составляет приблизительно 15мм.

После того, как приспособа сделана, пора приступить к формовке выводов LED. Катоды всех светодиодов необходимо аккуратно согнуть на 90 градусов. Направление изгиба вывода должно быть одинаковым у всех LED. Как определить где катод, а где анод у светодиода читайте здесь или здесь.

Шаг 2. Сборка куба

Разместите первые девять светодиодов в деревянном приспособлении. С позиционируйте направление изогнутых ножек в одном направлении, скажем по часовой стрелке (или против часовой, это не принципиально).

При помощи "крокодилов" зафиксируйте ножки LED и спаяйте их вместе. В самом конце припаяйте центральный LED. После того, как один уровень закончен, можно проверить правильность подключений LED при помощи батарейки или мультиметра. Т.к. потом, что-либо отпаять будет очень сложно, особенно если это центральный LED.

Таким образом сделайте все три уровня. После этого, необходимо установить и припаять уровни друг над другом. При этом важно соблюсти заданное расстояние. Если в приспособлении расстояние между светодиодами было 15мм, то и расстояние между уровнями у вас должно быть 15мм, иначе получится вытянутый или сжатый куб.

Куб готов. Теперь можно разместить его на макетной плате.

Шаг 3. Схемотехника

Схема устройства простая. Каждая из девяти колонн подключена к выводам Arduino через токоограничительные резисторы. А все 3 уровня подключены к общему выводу через NPN -транзисторы, которые, в свою очередь подключаются к Arduino.


Т.о. используется только 12 выводов Arduino. В один момент времени будет загораться LED только одного уровня, но за счет быстрого переключения между уровнями, будет казаться, что одновременно горят все уровни (в зависимости от программы).

Первым делом необходимо припаять 9 резисторов. Я использовал резисторы сопротивлением 220 Ом, которые ограничивают ток на уровне 22 мА. Номинал резисторов зависит от типа применяемых светодиодов, и варьируется от 135 до 470 Ом. Более точный расчет резистора для светодиода можно произвести здесь: LED калькулятор. Каждый вывод Arduino способен выдать до 40 мА.

Резисторы на плате, я припаял вертикально. После, я наклеил слой изоленты, чтобы не коротнуло с перемычками.

Следующим этапом будет монтаж радиоэлементов для управления уровнями. Здесь используется три NPN-транзистора. Базы транзисторов, через резистор 22 кОм подсоединяются к выводам Arduino. Т.о. контроллер открывает транзистор и весь уровень LED соединяется с "общим".

Шаг 4. Софт

В интернете я нашел несколько примеров управления подобными LED кубами. Но во всех них требовался огромный начальный массив bin или hex данных. Я все решил написать свою программу управления.

Первой задачей было сделать доступное для понимания соответствие программы и железа. Я принял решение обращаться к уровням и колоннам, вместо использования RAW-данных порта или традиционных x, y, z. Второй задачей было сделать базовые функции куба, такие как включение/отключение отдельного светодиода и др.

Также, я решил ввести две дополнительные возможности для реализации различных эффектов. Первая это буфер, который позволяет реализовывать основные функции для реализации сложных шаблонов, и вторая - это функция последовательности.

Всю эту функциональность я сделал в виде классов и сделал библиотеку Arduino, которую можно использовать для других проектов и даже с другой размерностью куба.

Опубліковано 05.08.2011

Еще одна простая светодиодная игрушка, но не менее эффектная, чем – светодиодный куб или . Видео того, что получилось можно посмотреть прямо здесь.

На Youtube можете найти много аналогичных и более крутых вещей. Самая ценная деталь – это куб, собранный из светодиодов. Мы будем строить простой куб с размерами грани 4x4x4 светодиода. Т.е. нам понадобиться 4x4x4=64 светодиода яркого свечения любого цвета. Хотел сделать куб 8x8x8, но тогда понадобилось бы 512 светодиодов. С учетом стоимости светодиодов дороговато как для простой игрушки, начнем с простого 4x4x4.

Как работает куб

Все сразу светодиоды нам не засветить, нужно много ног микроконтроллера. Поэтому поступают проще – поочередно включают по одному “этажу” светодиодов. Человеческих глаз инертен и не может уловить столь быстрое переключение и нам кажется, что горят светодиоды всех этажей. Но при этом нужно понимать, что каждый отдельно взятый этаж светодиодов горит не все время а отведенный ему период. Период свечения 1/кол этажей. В нашем случае 4. Т.е. Яркость свечения будет 1/4 от номинальной. Поэтому мы и взяли сверх яркие светодиоды, в противном случае у нас получился бы бледный куб.

Плата управления

На плате управления микроконтроллер ATMega8 отвечает за логику работы, пара микросхем – сдвиговых регистров для подачи сигналов на “столбы” и 4 транзисторных ключа, которыми включается нужный этаж светодиодов. Микроконтроллер отправляет в сдвиговые регистры необходимое число, а затем включает нужный транзисторный ключ, зажигая нужный этаж. Затем операция повторяется для каждого “этажа”.

На плате предусмотрен разъем для и подключения куба к компьютеру через модуль . Таким образом, можно заставить куб светиться по командам из компьютера. Однако, куб замечательно работает и без компьютера, правда тогда он сможет прокручивать только “фильм” зашитый в его памяти, но этого, как правило, более чем достаточно.

Куб можно питать от USB порта компьютера. Это удобно при подключении к компьютеру. Я питал отдельно, поскольку планировалось сделать отдельное устройство. На видео можно заметить отдельную плату простого стабилизатора напряжения на 5В, на который подается 12В от внешнего блока питания. Поскольку в один момент времени максимум могут гореть не 64 светодиода, а только 16, то их суммарный потребляемый ток (из расчета 20мА на каждый светодиод) 16*20=320мА. Что допустимо для USB порта.

Сборка светодиодного куба

Светодиоды спаиваются таким образом, чтобы одна из ножек соединялась с ножками других светодиодов по вертикали, формируя “столб”, а другая нога соединялась со всеми светодиодами в плоскости (в “этаже”). К кубу припаиваем провода по одному к столбу (16 шт.) и по одному на каждый этаж (4 шт.). По этим 20 проводам выполняется управление кубом. Подключается куб к плате следующим образом:

Интерфейс с компьютером

Взаимосвязь с платой осуществляется через COM-порт в случае использования модуля и через виртуальный COM-порт при использовании UART-USB. В том и другом случае для компьютера это COM-порт. Так что с разработкой софта проблем нет.

Софт для создания и проигрования эффектов

Для упрощения работ с созданием различных световых эффектов был создан простенький софт на Flash: . С его помощью можно составить различные эффекты и сохранить файл. Файл – это простая последовательность чисел, которую можно вставить в исходный код, скомпилировать и получить прошивку со своими собственными эффектами. Кроме того, этот файл можно проигрывать на подключенном к компьютеру кубе с помощью простой программы написанной на Delphi. Пример ее можно скачать здесь.

В проекте предложена конструкция светодиодного куба (LED cube) 4x4x4 стоимостью около 15 долларов.

В кубе использовано 64 зеленых светодиода, которые формируют 4 слоя и 16 колонок. Управление кубом реализуется на базе Arduino. Приведен пример программы для Arduino Uno, в которой реализовано управление каждым отдельным светодиодом из всего массива.

Необходимые детали для проекта

  • 64 светодиода
  • 4 резистора на 100 Ом
  • Коннекторы для распайки
  • Проводники
  • Макетная плата для распайки
  • Коробка
  • Источник питания на 9 В
  • Arduino Uno

Инструменты, которые могут вам пригодиться, приведены на фото ниже.

Формируем основу светодиодного куба

Можете воспользоваться эскизом, который приведен . Распечатайте его и наклейте на картонную коробку. При печати проверьте, чтобы был выставлен фактический размер и горизонтальная ориентация. Карандашом сделайте отверстия в узловых точках. Проверьте, хорошо ли садятся светодиоды в подготовленные отверстия.

Собираем светодиодный куб

Возьмите 64 светодиода и проверьте их работоспособность, подключив каждый к пальчиковой батарейке. Это, конечно, скучная процедура, но она необходима. Иначе из-за одного нерабочего светодиода впоследствии может быть куча проблем. Установите 16 светодиодов в отверстия в соответствии со стрелками на распечатке. Красные стрелки соответствуют плюсу (анод), синие - минусу (катод). Все аноды соедините между собой. После этого переверните коробку и вытолкните светодиоды. Выталкивайте аккуратно, чтобы не повредить собранный слой. Все. Первый слой готов. Аналогичным образом формируем еще три слоя. После соединяем четыре получившихся слоя с помощью свободных катодов. Советую соединять контакты начиная с центра и перемещаясь к периферии. Светодиодный куб начинает принимать необходимые очертания!

Установка светодиодного куба

Сделайте разметку на макетной плате с помощью маркера. Учтите, что размеченный прямоугольник должен быть немного меньше коробки, на которой будет установлен ваш куб. После разметки сделайте небольшой паз вдоль линии будущей грани и аккуратно отломайте ребра макетной платы. Сделайте 20 отверстий на верхней части вашей коробки для куба. Можно разметить места для сверления по соответсвующим отверстиям макетной платы.

Подключаем светодиодный куб

Сначала разделите вашу рейку коннекторов на три части таким образом, чтобы они подошли к цифровым и аналоговым пинам Arduino Uno. Зачистите и установите на вашей маетной плате в коробке 16 проводов для цифровых входов (рядов). 4 провода от аналоговых входов подключите с использованием резисторов на 100 Ом. Теперь переходите к подключению концов проводов к трем рейкам коннекторов. Подключение реализовано таким образом, что есть возможность управлять светодиодами вдоль трех осей. Колонки соответсвуют осям X и Y. Плюс к этому, благодаря четырем слоям мы получаем координату Z. Если вы посмотрите вниз с угла светодиодного куба, первый квадрант будет соответствовать обозначению (1, 1). Таким образом, каждый светодиод может быть инициализирован по подобной же методике. Давайте рассмотрим пример. Посмотрите на рисунок выше и найдите светодиод A(1,4). "A" означает, что это один и первых слоев, а "(1,4)" соответсвтует координатам X=1, Y=4.

Схема подключения

Ряды/колонки

Слои

[Пины для слоев]

Подключаем источник питания для Arduino

Для питания платы можно использовать отдельный адаптер на 9 вольт, 1 ампер. Можно использовать переходник для батарейки типа крона и питать от нее. В любом случае, вам понадобится сделать еще одно отверстие для провода питания. Когда будете делать отверстие, предусмотрите его размер немного большим, чем сам коннектор.

В общем то все, что вам после этого останется - загрузить скетч на Arduino и наслаждаться результатом:

Ваш куб готов!

Видео собранного светодиодного куба 4x4x4