Светодиоды для растений, спектр светодиодных ламп. Белый светодиод Как сделать, чтобы светодиоды мигали

LED (Lighting Emission Diode) - светодиоды с интенсивным светоизлучением хорошо всем известны. Примерно 10 лет назад (у нас в России) они произвели «тихую революцию в освещении», особенно там, где нужна мобильность, низкий удельный расход энергии, надежность и долгий срок службы. Казалось, что идеальный источник света, который жаждали получить, вело и просто туристы, а также охотники и рыболовы, спелеологи и альпинисты уже «здесь и сейчас». И достаточно протянуть руку, поднакопив чуток убитых енотов, и будет «на земли мир, в человецех благоволение». Теперь, можно сказать, что эти 10 лет не прошли даром и, светодиодная действительность оказалось интересна, разнообразна и предоставляет новые возможности, которые, ранее даже не приходили в голову.


Рис. 2 Конструкция светодиода Luxeon фирмы Lumileds lighting.* («Описание и принцип работы светодиодных светильников» Группа Энергосберегающих Компаний)


Рис. 3 Синий светодиод с монохроматическим излучением. . («LED - технология, принцип работы. Плюсы и минусы LED. » ).

ПРИНЦИП РАБОТЫ .

Светодиод, - прежде всего диод. То есть этакий хитрый камешек с p-n-переходом внутри. А другими словами, контакт двух полупроводников с разными типами проводимости. Который, при некоторых условиях, излучает свет в процессе рекомбинации (взаимного конструктивного самоубийства) электронов и дырок.
Обычно, чем больше ток через светодиод, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени и на выходе излучается больше света. Но ток нельзя сильно увеличивать, - из-за внутреннего сопротивления полупроводника и p-n-перехода светодиод может перегреваться, что приводит к его ускоренному старению или выходу из строя.
Для получения значимого светового потока, создают многослойные полупроводниковые структуры - гетероструктуры. За развитие полупроводниковых гетероструктур для высокоскоростной оптоэлектроники Жорес Алферов , российский физик, получил Нобелевскую премию в 2000 году.

ДВА СЛОВА ЗА ИСТОРИЮ.

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены в 1962 году. В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах и системах сигнализации. В 1993 году в компании Nichia (Япония) создали первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зеленый цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем, технология быстро развивалась и к 2005 году световой выход светодиодов достиг значения более 100 лм/Вт.

БЕЛЫЙ СВЕТ.

Обычный цветной светодиод излучает в узком спектре световых волн (монохроматическое излучение). Это хорошо для устройств сигнализации. А для освещения нужны белые светодиоды и применяют разные технологии..
Например, — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет.


Рис. 4 Спектр излучения RGB светодиода . («Википедия»)

Или, положим, используется люминофор, точнее, несколько люминофоров наносятся на светодиод и, в результате смешения цветов получается белый или близкий к белому свет. Белые светодиоды с люминофорами дешевле, чем RGB матрицы, что позволило использовать их для освещения.


Рис. 5 Спектр излучения белого светодиода с люминофором.* («Википедия»)


Рис. 6 Белый светодиод с люминофором. Схема одной из конструкций белого светодиода.

МРСВ - печатная плата с высокой тепловой проводимостью. * («Википедия»)

Вольтамперная характеристика светодиодов в прямом направлении нелинейная и ток начинает проходить, с некоторого порогового напряжения. На основных режимах излучения светодиода ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. А поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэ-тому ток приходится стабилизировать. Яркость свечения светодиодов можно, например, регулировать методом широтно-импульсной модуляции (ШИМ), для чего необходимо электронное устройство, подающее на светодиод импульсные высокочастотные сигналы. В отличие от ламп накаливания цветовая температура при регулировании яркости у светодиодов изменяется очень мало.

Достоинства и недостатки люминофорных светодиодов.

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и потери поэтому относительно малы..

  1. Основное преимущество белых светодиодов — высокий КПД, низкое удельное энергопотребление и высокая световая отдача - 160-170 Люмен/Ватт.
  2. Высокая надежность и длительный срок службы.
  3. Малый вес и размеры светодиодов позволяют ипользовать их в малогабаритных переносных фонарях.
  4. Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вредных последствий, так как ультрафиолет, особенно в присутствии озона, сильно влияет на органику, а инфракрасное излучение может привести к ожогам.
  5. Показатель удельной плотности мощности, характеризующий плотность светового потока, у стандартной люминесцентной лампы составляет 0,1-0,2 Вт/см², а у современного белого светодиода около 50 Вт/см².
  6. Работа при отрицательных температурах без снижения, а зачастую и с улучшением параметров.
  7. Светодиоды — безынерционные источники света, они не требуют времени на прогрев или выключение, как например люминесцентные лампы и количество циклов включения и выключения не оказывает влияния на их надежность.
  8. Светодиод механически прочен и исключительно надежен.
  9. Легкость регулирования яркости.
  10. Светодиод — низковольтный электроприбор, а стало быть, безопасный.
  11. Низкая пожароопасность, возможность использования в условиях взрывоопасности.
  12. Влагостойкость, стойкость к воздействию агрессивных сред.

Но есть и мелкие недостатки:

  1. Белые светодиоды в производстве дороже и сложнее ламп накаливания, хотя цена их постепенно снижается.
  2. Невысокое качество цветопередачи, которое, то же, понемногу улучшается.
  3. Мощные светодиоды требуют хорошей системы охлаждения.
  4. Быстрое ухудшение характеристик и даже выход из строя при повышенных температурах внешней среды более 60 — 80°C.
  5. Люминофоры также не любят высокой температуры, т.к. коэффициент преобразования и спектральные характеристики люминофора ухудшаются.
  6. Корпус светодиода делают из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, которая стареет и под воздействием температуры тускнет и желтеет, поглощая часть светового потока.
  7. Современный, мощный, сверхяркий светодиод может ослепить и повредить зрение человека.
  8. Контакты подвержены коррозионным отказам. Светоотражатели (обычно из пластмассы, покрытые тонким слоем алюминия), при повышенной температуре, ухудшают свои свойства со временем, а яркость и качество излучаемого света постепенно ухудшаются.

РЕАЛЬНЫЙ СРОК СЛУЖБЫ БЕЛЫХ СВЕТОДИОДОВ.


Рис. 7 Снижение светоотдачи в процессе эксплуатации и поведение при выходе из строя ламп накаливания (INC), флуоресцентных ламп (FL), высокоинтенсивных газоразрядных ламп (HID) и LED-ламп (масштаб не соблюден, приведен вид типовых кривых).

Журнал «Время электроники», Статья «Определение срока службы светодиодов»
Автор Эрик Ричман (Eric Richman ), старший научный сотрудник, Pacific Northwest National Laboratories (PNNL )

Про100 000 часов службы светодиодов мы знаем уже много лет. А как на самом деле?
«На заре светодиодов, наиболее часто встречаемая долговечность работы составляла 100000 часов. При этом никто так и не смог объяснить, откуда взялось это магическое число. Скорее всего, оно было продиктовано рынком, а не наукой. Первым производителем светодиодов, указавшим продолжительность эксплуатации, исходя из реальных технических параметров, стала Филипс Люмиледс, со своим детищем- светодиодом Luxeon. Долговечность первых устройств Luxeon, с заданным управляющим током 350 мА и температурой перехода 90 градусов цельсия, оценивалась в 50000 часов. Это значит, что после 50000 часов эксплуатации светодиода в заданных условиях его световой поток снизится до 70% от первоначальной.»
Статья «Неизведанные воды: определение долговечности LED светильников», Журнал «Время электроники», Тимур Набиев.

В настоящее время нет никакого стандарта определяющего для светодиодов, что такое собственно «срок службы». Нет также стандартов, определяющих количественно изменение цвета светодиода со временем. Не определено, как должен работать светодиод по истечении этого срока. Некоторые ведущие компании были вынуждены самостоятельно определять критерии для срока службы. Например, было выбрано два пороговых значения светового потока: - 30% и 50%, по достижению которых светодиод считается вышедшим из строя. И зависят эти значения от восприятия человеческим глазом излучаемого света.
1) - 30% уменьшение светового потока отраженного светодиодного света. То есть, когда светодиодный фонарь освещает дорогу, окружающие предметы и т.п.
2) - 50% уменьшение светового потока, когда используется прямой свет, например в светофорах, дорожных знаках, габаритных огнях автомобилей....
А другие компании первого ряда выбирают только одно пороговое значение - 50%.
Причем, деградация светодиодов и светодиодных фонарей происходит на всех уровня, начиная с p-n перехода и заканчивая прозрачной передней пластмассовой линзой корпуса фонаря. Причем, маломощные сигнальные и индикаторные светодиоды могут служить десятилетиями. А сверхяркие современные светодиоды, которые часто работают в напряженном режиме, как по току, так и по температуре и гораздо быстрее теряют свою яркость. Таким образом, реальный срок службы качественных современных светодиодов от нескольких месяцев до пяти - шести лет в непрерывном режиме работы. Например, фирма Petzl заявляет срок службы своих светодиодов в фонарях не менее 5000 часов. Кстати, ведущие фирмы нередко заявляют меньший срок службы своих устройств, чем у «супер-пупер-бюджетных», нередко азиатских производителей, которые просто форсируют величину тока и добиваются яркого свечения. При покупке фонарей, все характеристики светодиодов соответствуют паспортным, в котором, обязательно пишут про магические 100000 часов. Но реальный срок службы таких светодиодов может не превысить 1000…1500 часов и за это время световой поток снижается минимум в 2 раза.

БАТАРЕЙКИ И АККУМУЛЯТОРЫ.

Во время работы, батареи и аккумуляторы разряжаются, питающее напряжение уменьшается, яркость светодиодов и эффективный световой поток постепенно снижается.

Кривая уменьшения яркости при естественном разряде батарей.

Яркость с электронной регулировкой. Освещенность в 0,25 люкс измеряется на расстоянии 2 метра от фонаря. (Такую освещенность дает луна во время полнолуния).

Для улучшения эффективной светоотдачи применяют электронную регулировку (стабилизацию) питающего напряжения. Сила тока контролируется специальной микросхемой, благодаря чему обеспечивается стабильная яркость в течении всего времени работы. Идея была впервые разработанна фирмой Petzl. Благодаря электронной схеме, фонари обладают стабильными характеристиками в течении всего времени работы, а затем переходят в аварийный режим (0.25 люкс). Яркость 0.25 люкс - это освещение, которое дает полная луна высоко над горизонтом в ясную погоду.

Оптимальные источники питания.

1. Для светодиодных фонарей сегодня, это конечно алкалиновые или литиевые (литий-ионные) одноразовые батареи. Литиевые батареи имеют небольшой вес, обладают большой емкостью и хорошо работают при низких температурах. Это, например, Li-MnO2 батареи CR123 или CR2 с напряжением 3В или Li-FeS2 (литий-железодисульфидные) батареи с напряжением 1,5В, но не все светодиодные фонари совместимы с литиевыми батареями - необходимо уточнять в инструкции.
2. Аккумуляторы.

Характеристики

Никель-кадмиевые

Никель-металлгидридные

Литий-
ионные

Номинальное напряжение, В

Типичная емкость, Ач

Удельная энергия:
весовая, Втч/кг
объемная, Втч/дм3

30 - 60
100 -170

40 - 80
150 -240

100 - 180
250 - 400

Максимальный постоян-ный ток разряда, до

5 (10) С

3 С

2 С

Режим заряда

Стандартный: ток 0,1 С 16 ч
Ускоренный: ток 0,3 С 3-4ч
Быстрый:
ток 1С ~1 ч

Стандартный: ток 0,1 С 16 ч
Ускоренный: ток 0,3 С 3-4ч
Быстрый:
ток 1С ~1 ч

Заряд током 0,1- 1 С
до 4,1-4,2 В, далее при постоянном напряжении

Коэффициент отдачи по емкости (Сразряд/Сзаряд)

Диапазон рабочих темпе-ратур, ºС

Саморазряд (в %):
за 1 месяц
за 12 месяцев

4 - 5
10 - 20

Ток 1С означает ток, численно равный номинальной емкости.

* Из статьи: А.А. Тагановой «ЛИТИЕВЫЕ ИСТОЧНИКИ ТОКА ДЛЯ ПОРТАТИВНОЙ ЭЛЕКТРОННОЙ АППАРАТУРЫ»

Никель-кадмиевые (NiCd) имеют небольшой вес и габариты, Плохую экологичность - кадмий страшно вредный для здоровья металл. Взрывоопасны с прочным и герметичным корпусом, имеющие микроклапаны для автоматического сброса газов, но, при этом, достаточно высокую надежность и большие токи зарядки-разрядки. Их часто применяют в бортовой аппаратуре и для устройств, потребляющих большую мощность, например, фонарей для дайвинга. Единственный вид аккумуляторов, которые могут храниться разряженными, в отличие от никель-металл-гидридных аккумуляторов (Ni-MH), которые нужно хранить полностью заряженными и от литий-ионных аккумуляторов (Li-ion), которые необходимо хранить при 40%-ом заряде от ёмкости аккумулятора
Никель-металл-гидридные (Ni-MH), были разработаны для замены никель-кадмиевых (NiCd). NiMH аккумуляторы практически избавлены от «эффекта памяти » а полная разрядка требуется не часто. Экологически безопасны. Наиболее благоприятный режим работы: заряд небольшим током, 0,1 номинальной ёмкости, время заряда — 15-16 часов (рекомендация производителя). Аккумуляторы рекомендуется хранить полностью заряженными в холодильнике, но не ниже 0 С?. Обеспечивают 40-50-процентное преимущество в удельной энергоемкости по сравнению с прежним фаворитом — NiCd. Имеют значительный потенциал для увеличения энергетической плотности. Дружественны к окружающей среде — содержат только умеренные токсины, доступные для вторичной переработки. Недорогие. Доступные в широком диапазоне размеров, параметров и эксплуатационных характеристик.

ГАБАРИТЫ И МИГАЛКИ.

12) TL-LD1000 CatEye

13) RAPID 1 (TL-LD611-F)CatEye

Европейская практика безопасности предполагает использование не только задних, но и передних габаритных фонарей.
Rapid 1 передний (белый) и задний (красный) фонари, с функцией перезарядки аккумуляторных батарей через USB порт и индикатором уровня заряда. Высокая мощность фонаря достигается применением SMD-светодиода и технологии OptiCube ™ . Мерцание CatEye Rapid 1 привлекает внимание автомобилистов и прохожих.
4 режима работы обеспечивают оптимальный выбор параметров, как ночью, так и днем. CatEye Rapid 1 поставляется с низкопрофильным кронштейном SP-12 Flextight ™, который совместим со всеми новыми RM-1.

    Время работы: 5 часов (постоянный режим)

    25 часов (быстрый и импульсный режимы)

    40 часов (мигающий режим)

    Режим памяти освещения (последний включенный вами режим)

    Аккумулятор Li-ion USB - заряжаемый

    Вес около 41 гр. с креплением и аккумулятором

    Клипса на одежду.

14) SOLAR (SL-LD210)CatEye

Велосипедист должен быть виден не только со спины, но и встречным потоком машин, не только ночью, но и днем - со включенным габаритным фонарем.

Один 5мм светодиод включается автоматически в мигающим режиме, при начале движения в темноте. Встроенная солнечная батарея производит зарядку в течение 2 часов в хороших погодных условиях и обеспечивает работу до 5 часов. Существуют модели фронтальной и задней установки, поставляется вместе с новым кронштейном Flextight ™. Вес 44 гр. вместе с кронштейном и аккумулятором

ДИНАМО - ФОНАРИ (ЖУЧКИ).

15) BLUE BIRD


3- светодиода, яркость 6 Лм, 3 режима, два постоянных (1LED и 3LED), один мигающий (3LED), работа после подзарядки: - около 40 минут (3LED); - около 90 минут (1LED), вес с креплением на руль 115г.

Впечатление:

Ну, очень удачный фонарик, ИМХО, и как габарит на велосипеде, так и для освещения в «ручном режиме» в палатке, на привале и вообще. В цивилизованных городских условиях, когда общее освещение есть и при хорошем зрении, может быть даже основным фонарем, особенно если дорога известна. Динамка крутиться легко, не сильно шумит, аккумулятор заряжается быстро. Светит хорошим белым светом. ОК!

16) Зарядное устройство Energenie EG-PC-005 для мобильных телефонов с ручным приводом и фонариком. Устанавливается на велосипеде.


Энергия вырабатывается при помощи динамо-машинки с рукояткой. Вращение рукоятки в течение трех минут заряжает мобильный телефон как минимум на 8 минут разговора. Вращение рукоятки в течение 10 минут обеспечивает яркий свет фонарика как минимум в течение 50 минут.

Технические характеристики

  • Исходящее напряжение - 4,0-5,5V
  • Исходящий ток до 400 mA
  • Встроенный Ni-MH перезаряжаемый аккумулятор 80 mAH допускает, как минимум 500 полных перезарядок
  • 2 фонарика:
    -головной: светодиодный, при максимальном заряде освещает до 10метров.
    -задний: красный светодиод.
  • Два режима: постоянное свечение (3LED), - стробоскоб (3LED)
  • Вес нетто 0,2 кг
    Комплект поставки
  • Зарядное устройство Energenie EG-PC-005 для мобильных телефонов с ручным приводом, устройством крепления на велосипеде и передним фонариком
  • задний фонарик с 1,2м кабелем
  • кабель для телефонов Nokia
  • 6 адаптеров для других телефонов

Впечатление:

Неплохой габарит, годится для освещения в палатке и для всяких хозяйственных нужд. Светодиоды не самые лучшие - с явным синеватым оттенком, что не есть гут. К сожалению, аккумулятор с некоторым трудом справляется с двойной нагрузкой (3 LED ) впереди и красный габарит сзади - и достаточно быстро «садиться». Пришлось отключить и выкинуть красный задний габарит и, ИМХО, стало получше (подольше). Рычаг динамки крутиться легко, шума не много, собственный аккумулятор заряжается без проблем. Приходилось заряжать в походных условиях и мобильник и электронную книгу. При некотором упорстве и терпении сделать это можно, но придется потрудиться. Когда фонарь работет на внешнюю нагрузку, усилие на рычаге значительно возрастет и приходиться слегка попотеть. Но общая оценка данного дивайса - полезная вещь.

17) Зарядное устройство Energenie EG-SC-001 для мобильных телефонов с аккумулятором, заряжаемым от света и от электросети и со встроенным светодиодным фонариком.

Наличие USB разъема позволяет быстро заряжать встроенный аккумулятор оснащённый защитой от перезаряда, глубокого разряда, перегрузки и короткого замыкания. В случае разряда аккумулятора срабатывает система оповещения. Имеет встроенный светодиодный фонарик.

Заряжает следующие мобильные телефоны и снабжен следующими разъемами: Nokia 6101 и 8210 серий, Samsung A288 серии, Mini USB 5pin, Sony Ericsson K750 серии, Micro-USB.

Солнечные элементы Energenie EG-SC-001 позволяет заряжать мобильные устройства в походе, разумеется в солнечную погоду.
Технические характеристики

  • исходящее напряжение - 5,4V
  • исходящий ток до 1400 mA
  • встроенный Li-ion перезаряжаемый аккумулятор 2000 mAH допускает, как минимум 500 полных перезарядок
  • встроенный USB разъем 5-6V
  • яркий светодиодный фонарик
  • размеры: 116*49*26 мм
  • вес 130 г

Комплект поставки

  • Зарядное устройство
  • AC220V-DC5V USB Адаптер питания A черный
  • 5 переходников для зарядки мобильных телефонов
  • Соединительный USB кабель.
Please enable JavaScript to view the

Экология потребления. Наука и техника: Какое нужно освещение, чтобы при умеренном энергопотреблении получить полноценно развитое, большое, ароматное и вкусное растение?

Интенсивность фотосинтеза под красным светом максимальна, но под одним только красным растения гибнут либо их развитие нарушается. Например, корейские исследователи показали, что при освещении чистым красным масса выращенного салата больше, чем при освещении сочетанием красного и синего, но в листьях значимо меньше хлорофилла, полифенолов и антиоксидантов. А биофак МГУ установил, что в листьях китайской капусты под узкополосным красным и синим светом (по сравнению с освещением натриевой лампой) снижается синтез сахаров, угнетается рост и не происходит цветения.


Рис. 1 Леанна Гарфилд, Tech Insider - Aerofarms

Какое нужно освещение, чтобы при умеренном энергопотреблении получить полноценно развитое, большое, ароматное и вкусное растение?

В чем оценивать энергетическую эффективность светильника?

Основные метрики оценки энергетической эффективности фитосвета:

  • Photosynthetic Photon Flux (PPF ), в микромолях на джоуль, т. е. в числе квантов света в диапазоне 400–700 нм, которые излучил светильник, потребивший 1 Дж электроэнергии.
  • Yield Photon Flux (YPF ), в эффективных микромолях на джоуль, т. е. в числе квантов на 1 Дж электроэнергии, с учетом множителя - кривой McCree .

PPF всегда получается немного выше, чем YPF (кривая McCree нормирована на единицу и в большей части диапазона меньше единицы), поэтому первую метрику выгодно использовать продавцам светильников. Вторую метрику выгоднее использовать покупателям, так как она более адекватно оценивает энергетическую эффективность.

Эффективность ДНаТ

Крупные агрохозяйства с огромным опытом, считающие деньги, до сих пор используют натриевые светильники. Да, они охотно соглашаются повесить над опытными грядками предоставляемые им светодиодные светильники, но не согласны за них платить.

Из рис. 2 видно, что эффективность натриевого светильника сильно зависит от мощности и достигает максимума при 600 Вт. Характерное оптимистичное значение YPF для натриевого светильника 600–1000 Вт составляет 1,5 эфф. мкмоль/Дж. Натриевые светильники 70–150 Вт имеют в полтора раза меньшую эффективность.

Рис. 2. Типичный спектр натриевой лампы для растений (слева) . Эффективность в люменах на ватт и в эффективных микромолях серийных натриевых светильников для теплиц марок Cavita , E-Papillon , «Галад» и «Рефлакс» (справа)

Любой светодиодный светильник, имеющий эффективность 1,5 эфф. мкмоль/Вт и приемлемую цену, можно считать достойной заменой натриевого светильника.

Сомнительная эффективность красно-синих фитосветильников

В этой статье не приводим спектров поглощения хлорофилла потому, что ссылаться на них в обсуждении использования светового потока живым растением некорректно. Хлорофилл invitro , выделенный и очищенный, действительно поглощает только красный и синий свет. В живой клетке пигменты поглощают свет во всем диапазоне 400–700 нм и передают его энергию хлорофиллу. Энергетическая эффективность света в листе определяется кривой «McCree 1972 » (рис. 3).

Рис. 3. V (λ) - кривая видности для человека; RQE - относительная квантовая эффективность для растения (McCree 1972); σ r и σ fr - кривые поглощения фитохромом красного и дальнего красного света; B (λ) - фототропическая эффективность синего света

Отметим: максимальная эффективность в красном диапазоне раза в полтора выше, чем минимальная - в зеленом. А если усреднить эффективность по сколько-нибудь широкой полосе, разница станет еще менее заметной. На практике перераспределение части энергии из красного диапазона в зеленый энергетическую функцию света иногда, наоборот, усиливает. Зеленый свет проходит через толщу листьев на нижние ярусы, эффективная листовая площадь растения резко увеличивается, и урожайность, например, салата повышается .

Энергетическая целесообразность освещения растений распространенными светодиодными светильниками белого света исследована в работе .

Характерная форма спектра белого светодиода определяется:

  • балансом коротких и длинных волн, коррелирующим с цветовой температурой (рис. 4, слева);
  • степенью заполненности спектра, коррелирующей с цветопередачей (рис. 4, справа).

Рис. 4. Спектры белого светодиодного света с одной цветопередачей, но разной цветовой температурой КЦТ (слева) и с одной цветовой температурой и разной цветопередачей R a (справа)

Различия в спектре белых диодов с одной цветопередачей и одной цветовой температуры едва уловимы. Следовательно, мы можем оценивать спектрозависимые параметры всего лишь по цветовой температуре, цветопередаче и световой эффективности - параметрам, которые написаны у обычного светильника белого света на этикетке.

Результаты анализа спектров серийных белых светодиодов следующие:

1. В спектре всех белых светодиодов даже с низкой цветовой температурой и с максимальной цветопередачей, как и у натриевых ламп, крайне мало дальнего красного (рис. 5).

Рис. 5. Спектр белого светодиодного (LED 4000K R a = 90) и натриевого света (HPS ) в сравнении со спектральными функциями восприимчивости растения к синему (B ), красному (A_r ) и дальнему красному свету (A_fr )

В естественных условиях затененное пологом чужой листвы растение получает больше дальнего красного, чем ближнего, что у светолюбивых растений запускает «синдром избегания тени» - растение тянется вверх. Помидорам, например, на этапе роста (не рассады!) дальний красный необходим, чтобы вытянуться, увеличить рост и общую занимаемую площадь, а следовательно, и урожай в дальнейшем.

Соответственно, под белыми светодиодами и под натриевым светом растение чувствует себя как под открытым солнцем и вверх не тянется.

2. Синий свет нужен для реакции «слежение за солнцем» (рис. 6).

Примеры использования этой формулы:

А. Оценим для основных значений параметров белого света, какова должна быть освещенность, чтобы при заданной цветопередаче и цветовой температуре обеспечить, например, 300 эфф. мкмоль/с/м2:

Видно, что применение теплого белого света высокой цветопередачи позволяет использовать несколько меньшие освещенности. Но если учесть, что световая отдача светодиодов теплого света с высокой цветопередачей несколько ниже, становится понятно, что подбором цветовой температуры и цветопередачи нельзя энергетически значимо выиграть или проиграть. Можно лишь скорректировать долю фитоактивного синего или красного света.

Б. Оценим применимость типичного светодиодного светильника общего назначения для выращивания микрозелени.

Пусть светильник размером 0,6 × 0,6 м потребляет 35 Вт, имеет цветовую температуру 4000 К , цветопередачу Ra = 80 и световую отдачу 120 лм/Вт. Тогда его эффективность составит YPF = (120/100)⋅(1,15 + (35⋅80 − 2360)/4000) эфф. мкмоль/Дж = 1,5 эфф. мкмоль/Дж. Что при умножении на потребляемые 35 Вт составит 52,5 эфф. мкмоль/с.

Если такой светильник опустить достаточно низко над грядкой микрозелени площадью 0,6 × 0,6 м = 0,36 м 2 и тем самым избежать потерь света в стороны, плотность освещения составит 52,5 эфф. мкмоль/с / 0,36м 2 = 145 эфф. мкмоль/с/м 2 . Это примерно вдвое меньше обычно рекомендуемых значений. Следовательно, мощность светильника необходимо также увеличить вдвое.

Прямое сравнение фитопараметров светильников разных типов

Сравним фитопараметры обычного офисного потолочного светодиодного светильника, произведенного в 2016 году, со специализированными фитосветильниками (рис. 7).

Рис. 7. Сравнительные параметры типичного натриевого светильника 600Вт для теплиц, специализированного светодиодного фитосветильника и светильника для общего освещения помещений

Видно, что обычный светильник общего освещения со снятым рассеивателем при освещении растений по энергетической эффективности не уступает специализированной натриевой лампе. Видно также, что фитосветильник красно-синего света (производитель намеренно не назван) сделан на более низком технологическом уровне, раз его полный КПД (отношение мощности светового потока в ваттах к мощности, потребляемой из сети) уступает КПД офисного светильника. Но если бы КПД красно-синего и белого светильников были одинаковы, то фитопараметры тоже были бы примерно одинаковы!

Также по спектрам видно, что красно-синий фитосветильник не узкополосен, его красный горб широк и содержит гораздо больше дальнего красного, чем у белого светодиодного и натриевого светильника. В тех случаях, когда дальний красный необходим, использование такого светильника как единственного или в комбинации с другими вариантами может быть целесообразно.

Оценка энергетической эффективности осветительной системы в целом:

Реакция растения на свет: интенсивность газообмена, потребления питательных веществ из раствора и процессов синтеза - определяется лабораторным путем. Отклики характеризуют не только фотосинтез, но и процессы роста, цветения, синтеза необходимых для вкуса и аромата веществ.

На рис. 14 показана реакция растения на изменение длины волны освещения. Измерялась интенсивность потребления натрия и фосфора из питательного раствора мятой, земляникой и салатом. Пики на таких графиках - признаки стимулирования конкретной химической реакции. По графикам видно что исключить из полного спектра ради экономии какие-то диапазоны, - все равно что удалить часть клавиш рояля и играть мелодию на оставшихся.

Рис. 14. Стимулирующая роль света для потребления азота и фосфора мятой, земляникой и салатом.

Принцип ограничивающего фактора можно распространить на отдельные спектральные составляющие - для полноценного результата в любом случае нужен полный спектр. Изъятие из полного спектра некоторых диапазонов не ведет к значимому росту энергетической эффективности, но может сработать «бочка Либиха» - и результат окажется отрицательным.
Примеры демонстрируют, что обычный белый светодиодный свет и специализированный «красно-синий фитосвет» при освещении растений обладают примерно одинаковой энергетической эффективностью. Но широкополосный белый комплексно удовлетворяет потребности растения, выражающиеся не только в стимуляции фотосинтеза.

Убирать из сплошного спектра зеленый, чтобы свет из белого превратился в фиолетовый, - маркетинговый ход для покупателей, которые хотят «специального решения», но не выступают квалифицированными заказчиками.

Корректировка белого света

Наиболее распространенные белые светодиоды общего назначения имеют невысокую цветопередачу Ra = 80, что обусловлено нехваткой в первую очередь красного цвета (рис. 4).

Недостаток красного в спектре можно восполнить, добавив в светильник красные светодиоды. Такое решение продвигает, например, компания CREE . Логика «бочки Либиха» подсказывает, что такая добавка не повредит, если это действительно добавка, а не перераспределение энергии из других диапазонов в пользу красного.

Интересную и важную работу проделал в 2013–2016 годах ИМБП РАН : там исследовали, как влияет на развитие китайской капусты добавление к свету белых светодиодов 4000 К / Ra = 70 света узкополосных красных светодиодов 660 нм.

И выяснили следующее:

  • Под светодиодным светом капуста растет примерно так же, как под натриевым, но в ней больше хлорофилла (листья зеленее).
  • Cухая масса урожая почти пропорциональна общему количеству света в молях, полученному растением. Больше света - больше капусты.
  • Концентрация витамина С в капусте незначительно повышается с ростом освещенности, но значимо увеличивается с добавлением к белому свету красного.
  • Значимое увеличение доли красной составляющей в спектре существенно повысило концентрацию нитратов в биомассе. Пришлось оптимизировать питательный раствор и вводить часть азота в аммонийной форме, чтобы не выйти за ПДК по нитратам. А вот на чисто-белом свету можно было работать только с нитратной формой.
  • При этом увеличение доли красного в общем световом потоке почти не влияет на массу урожая. То есть восполнение недостающих спектральных компонент влияет не на количество урожая, а на его качество.
  • Более высокая эффективность в молях на ватт красного светодиода приводит к тому, что добавление красного к белому эффективно еще и энергетически.

Таким образом, добавление красного к белому целесообразно в частном случае китайской капусты и вполне возможно в общем случае. Конечно, при биохимическом контроле и правильном подборе удобрений для конкретной культуры.

Варианты обогащения спектра красным светом

Растение не знает, откуда к нему прилетел квант из спектра белого света, а откуда - «красный» квант. Нет необходимости делать специальный спектр в одном светодиоде. И нет необходимости светить красным и белым светом из одного какого-то специального фитосветильника. Достаточно использовать белый свет общего назначения и отдельным светильником красного света освещать растение дополнительно. А когда рядом с растением находится человек, красный светильник можно по датчику движения выключать, чтобы растение выглядело зеленым и симпатичным.

Но оправданно и обратное решение - подобрав состав люминофора, расширить спектр свечения белого светодиода в сторону длинных волн, сбалансировав его так, чтобы свет остался белым. И получится белый свет экстравысокой цветопередачи, пригодный как для растений, так и для человека.

Особенно интересно увеличивать долю красного, повышая общий индекс цветопередачи, в случае сити-фермерства - общественного движения по выращиванию необходимых человеку растений в городе, зачастую с объединением жизненного пространства, а значит, и световой среды человека и растений.

Открытые вопросы

Можно выявлять роль соотношения дальнего и ближнего красного света и целесообразность использования «синдрома избегания тени» для разных культур. Можно спорить, на какие участки при анализе целесообразно разбивать шкалу длин волн.

Можно обсуждать - нужны ли растению для стимуляции или регуляторной функции длины волн короче 400 нм или длиннее 700 нм. Например, есть частное сообщение, что ультрафиолет значимо влияет на потребительские качества растений. В числе прочего краснолистные сорта салата выращивают без ультрафиолета, и они растут зелеными, но перед продажей облучают ультрафиолетом, они краснеют и отправляются на прилавок. И корректно ли новая метрика PBAR (plant biologically active radiation ), описанная в стандарте ANSI/ASABE S640 , Quantities and Units of Electromagnetic Radiation for Plants (Photosynthetic Organisms , предписывает учитывать диапазон 280–800нм.

Заключение

Сетевые магазины выбирают более лежкие сорта, а затем покупатель голосует рублем за более яркие плоды. И почти никто не выбирает вкус и аромат. Но как только мы станем богаче и начнем требовать большего, наука мгновенно даст нужные сорта и рецепты питательного раствора.

А чтобы растение синтезировало все, что для вкуса и аромата нужно, потребуется освещение со спектром, содержащим все длины волн, на которые растение прореагирует, т. е. в общем случае сплошной спектр. Возможно, базовым решением будет белый свет высокой цветопередачи.

Литература
1. Son K-H, Oh M-M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes // Hortscience. – 2013. – Vol. 48. – P. 988-95.
2. Ptushenko V.V., Avercheva O.V., Bassarskaya E.M., Berkovich Yu A., Erokhin A.N., Smolyanina S.O., Zhigalova T.V., 2015. Possible reasons of a decline in growth of Chinese cabbage under acombined narrowband red and blue light in comparison withillumination by high-pressure sodium lamp. Scientia Horticulturae https://doi.org/10.1016/j.scienta.2015.08.021
3. Sharakshane A., 2017, Whole high-quality light environment for humans and plants. https://doi.org/10.1016/j.lssr.2017.07.001
4. C. Dong, Y. Fu, G. Liu & H. Liu, 2014, Growth, Photosynthetic Characteristics, Antioxidant Capacity and Biomass Yield and Quality of Wheat (Triticum aestivum L.) Exposed to LED Light Sources with Different Spectra Combinations
5. Lin K.H., Huang M.Y., Huang W.D. et al. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata) // Scientia Horticulturae. – 2013. – V. 150. – P. 86–91.
6. Lu, N., Maruo T., Johkan M., et al. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density // Environ. Control. Biol. – 2012. Vol. 50. – P. 63–74.
7. Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., О.С. Яковлева, А.И. Знаменский, И.Г. Тараканов, С.Г. Радченко, С.Н. Лапач. Обоснование оптимальных режимов освещения растений для космической оранжереи «Витацикл-Т». Авиакосмическая и экологическая медицина. 2016. Т. 50. № 4.
8. Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., Яковлева О.С., Знаменский А.И., Тараканов И.Г., Радченко С.Г., Лапач С.Н., Трофимов Ю.В., Цвирко В.И. Оптимизация светодиодной системы освещения витаминной космической оранжереи. Авиакосмическая и экологическая медицина. 2016. Т. 50. № 3.
9. Коновалова И.О., Беркович Ю.А., Смолянина С.О., Помелова М.А., Ерохин А.Н., Яковлева О.С., Тараканов И.Г. Влияние параметров светового режима на накопление нитратов в надземной биомассе капусты китайской (Brassica chinensis L.) при выращивании со светодиодными облучателями. Агрохимия. 2015. № 11.

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Белый светодиод

В отличие от традиционных ламп накаливания и люминесцентных ламп, дающих белый свет, светодиоды генерируют свет очень в узком диапазоне спектра, т.е. дают почти монохромное свечение. Именно поэтому светодиоды давно используют в контрольных панелях и гирляндах, а сегодня особенно их эффективно используют в световых установках, излучающих какой-либо определенный основной цвет, к примеру, в светофорах, указателях, сигнальных огнях.

Принцип устройства белого светодиода

Принцип устройства белого светодиода не очень сложен, сложна технологи реализации. Чтобы светодиод излучал белый свет приходится прибегать к дополнительным техническим элементам и техническим решениям. Основными способами для получения белого свечения в светодиодах являются:

    нанесение слоя люминофора, на синие кристаллы;

    нанесение нескольких слоев люминофора на кристаллы, излучающие свет, близкий по цвету к ультрафиолетовому;

    RGB-системы, в которых за счет смешения света множества монохромных красных, зеленых и синих диодов достигается свечение белого цвета.

В первом случае, чаще всего, используют кристаллы синих светодиодов, которые покрывают люминофором, желтым фосфором. Фосфор поглощает некоторое количество синего света и излучает желтый свет. При смешении оставшегося непоглащенного синего света с желтым получается свет близкий к белому.

Второй метод представляет собой не так давно разработанную технология получения твердотельных источников белого света на основе комбинации диода, излучающего свечение, близкое по цвету к ультрафиолетовому, и нескольких слоев люминофора из фосфора различного состава.

В последнем случае белый свет получают классическим путем, смешивая три базовых цвета (красного, зеленого и синего). Качество белого света улучшают за счет дополнения конфигурации RGB желтыми светодиодами, что позволяет охватывать желтую часть спектра.

Достоинства и недостатки былых светодиодов

У каждого из этих способов есть свои положительные о отрицательные стороны. Так, для белых люминофорных светодиодов, изготавливаемых по принципу комбинации синих кристаллов с фосфорным люминофором характерны достаточно низкий индекс цветопередачи, склонность к генерации белого света холодных тонов, неоднородность оттенка свечения при достаточно высоком световом потоке и относительно небольшой стоимости.

Белые люминофорные светодиоды , полученные на основе комбинации диодов, с близким к ультрафиолетовому цвету свечения и разноцветных фосфоров, обладают отличным индексом цветопередачи, могут генерировать белый свет более теплых оттенков и отличаются большей однородностью оттенков свечения от диода к диоду. Однако при этом они потребляют больше электроэнергии и не столь ярки, как первые.

В свою очередь RGB-светодиоды позволяют создавать светодинамические эффекты в световых установках со сменой цвета свечения и различными тонами белого свечения и потенциально может обеспечивать очень высокий индекс цветопередачи. В то же время светодиоды отдельных цветов по-разному реагируют на величины рабочего тока, окружающую их температуру и регулирование яркости, и потому RGB-светодиоды нуждаются в достаточно сложных и дорогостоящих системах управления для достижения стабильной работы.

Чтобы светильники на основе белых светодиодов давали более качественный свет, т.е. более полный спектр, в конструкции светильников используют

Интенсивность фотосинтеза под красным светом максимальна, но под одним только красным растения гибнут либо их развитие нарушается. Например, корейские исследователи показали, что при освещении чистым красным масса выращенного салата больше, чем при освещении сочетанием красного и синего, но в листьях значимо меньше хлорофилла, полифенолов и антиоксидантов. А биофак МГУ установил, что в листьях китайской капусты под узкополосным красным и синим светом (по сравнению с освещением натриевой лампой) снижается синтез сахаров, угнетается рост и не происходит цветения.

Рис. 1 Леанна Гарфилд, Tech Insider - Aerofarms

Какое нужно освещение, чтобы при умеренном энергопотреблении получить полноценно развитое, большое, ароматное и вкусное растение?

В чем оценивать энергетическую эффективность светильника?

Основные метрики оценки энергетической эффективности фитосвета:

  • Photosynthetic Photon Flux (PPF ), в микромолях на джоуль, т. е. в числе квантов света в диапазоне 400–700 нм, которые излучил светильник, потребивший 1 Дж электроэнергии.
  • Yield Photon Flux (YPF ), в эффективных микромолях на джоуль, т. е. в числе квантов на 1 Дж электроэнергии, с учетом множителя - кривой McCree .
PPF всегда получается немного выше, чем YPF (кривая McCree нормирована на единицу и в большей части диапазона меньше единицы), поэтому первую метрику выгодно использовать продавцам светильников. Вторую метрику выгоднее использовать покупателям, так как она более адекватно оценивает энергетическую эффективность.

Эффективность ДНаТ

Крупные агрохозяйства с огромным опытом, считающие деньги, до сих пор используют натриевые светильники. Да, они охотно соглашаются повесить над опытными грядками предоставляемые им светодиодные светильники, но не согласны за них платить.

Из рис. 2 видно, что эффективность натриевого светильника сильно зависит от мощности и достигает максимума при 600 Вт. Характерное оптимистичное значение YPF для натриевого светильника 600–1000 Вт составляет 1,5 эфф. мкмоль/Дж. Натриевые светильники 70–150 Вт имеют в полтора раза меньшую эффективность.


Рис. 2. Типичный спектр натриевой лампы для растений (слева) . Эффективность в люменах на ватт и в эффективных микромолях серийных натриевых светильников для теплиц марок Cavita , E-Papillon , «Галад» и «Рефлакс» (справа)

Любой светодиодный светильник, имеющий эффективность 1,5 эфф. мкмоль/Вт и приемлемую цену, можно считать достойной заменой натриевого светильника.

Сомнительная эффективность красно-синих фитосветильников

В этой статье не приводим спектров поглощения хлорофилла потому, что ссылаться на них в обсуждении использования светового потока живым растением некорректно. Хлорофилл invitro , выделенный и очищенный, действительно поглощает только красный и синий свет. В живой клетке пигменты поглощают свет во всем диапазоне 400–700 нм и передают его энергию хлорофиллу. Энергетическая эффективность света в листе определяется кривой «McCree 1972 » (рис. 3).


Рис. 3. V (λ) - кривая видности для человека; RQE - относительная квантовая эффективность для растения (McCree 1972); σ r и σ fr - кривые поглощения фитохромом красного и дальнего красного света; B (λ) - фототропическая эффективность синего света

Отметим: максимальная эффективность в красном диапазоне раза в полтора выше, чем минимальная - в зеленом. А если усреднить эффективность по сколько-нибудь широкой полосе, разница станет еще менее заметной. На практике перераспределение части энергии из красного диапазона в зеленый энергетическую функцию света иногда, наоборот, усиливает. Зеленый свет проходит через толщу листьев на нижние ярусы, эффективная листовая площадь растения резко увеличивается, и урожайность, например, салата повышается .

Освещение растений белыми светодиодами

Энергетическая целесообразность освещения растений распространенными светодиодными светильниками белого света исследована в работе .

Характерная форма спектра белого светодиода определяется:

  • балансом коротких и длинных волн, коррелирующим с цветовой температурой (рис. 4, слева);
  • степенью заполненности спектра, коррелирующей с цветопередачей (рис. 4, справа).


Рис. 4. Спектры белого светодиодного света с одной цветопередачей, но разной цветовой температурой КЦТ (слева) и с одной цветовой температурой и разной цветопередачей R a (справа)

Различия в спектре белых диодов с одной цветопередачей и одной цветовой температуры едва уловимы. Следовательно, мы можем оценивать спектрозависимые параметры всего лишь по цветовой температуре, цветопередаче и световой эффективности - параметрам, которые написаны у обычного светильника белого света на этикетке.

Результаты анализа спектров серийных белых светодиодов следующие:

1. В спектре всех белых светодиодов даже с низкой цветовой температурой и с максимальной цветопередачей, как и у натриевых ламп, крайне мало дальнего красного (рис. 5).


Рис. 5. Спектр белого светодиодного (LED 4000K R a = 90) и натриевого света (HPS ) в сравнении со спектральными функциями восприимчивости растения к синему (B ), красному (A_r ) и дальнему красному свету (A_fr )

В естественных условиях затененное пологом чужой листвы растение получает больше дальнего красного, чем ближнего, что у светолюбивых растений запускает «синдром избегания тени» - растение тянется вверх. Помидорам, например, на этапе роста (не рассады!) дальний красный необходим, чтобы вытянуться, увеличить рост и общую занимаемую площадь, а следовательно, и урожай в дальнейшем.

Соответственно, под белыми светодиодами и под натриевым светом растение чувствует себя как под открытым солнцем и вверх не тянется.

2. Синий свет нужен для реакции «слежение за солнцем» (рис. 6).


Рис. 6. Фототропизм - разворот листьев и цветов, вытягивание стеблей на синюю компоненту белого света (иллюстрация из «Википедии»)

В одном ватте потока белого светодиодного света 2700 К фитоактивной синей компоненты вдвое больше, чем в одном ватте натриевого света. Причем доля фитоактивного синего в белом свете растет пропорционально цветовой температуре. Если нужно, например, декоративные цветы развернуть в сторону людей, их следует подсветить с этой стороны интенсивным холодным светом, и растения развернутся.

3. Энергетическая ценность света определяется цветовой температурой и цветопередачей и с точностью 5 % может быть определена по формуле:

где - световая отдача в лм/Вт, - общий индекс цветопередачи, - коррелированная цветовая температура в градусах Кельвина.

Примеры использования этой формулы:

А. Оценим для основных значений параметров белого света, какова должна быть освещенность, чтобы при заданной цветопередаче и цветовой температуре обеспечить, например, 300 эфф. мкмоль/с/м2:


Видно, что применение теплого белого света высокой цветопередачи позволяет использовать несколько меньшие освещенности. Но если учесть, что световая отдача светодиодов теплого света с высокой цветопередачей несколько ниже, становится понятно, что подбором цветовой температуры и цветопередачи нельзя энергетически значимо выиграть или проиграть. Можно лишь скорректировать долю фитоактивного синего или красного света.

Б. Оценим применимость типичного светодиодного светильника общего назначения для выращивания микрозелени.

Пусть светильник размером 0,6 × 0,6 м потребляет 35 Вт, имеет цветовую температуру 4000 К , цветопередачу Ra = 80 и световую отдачу 120 лм/Вт. Тогда его эффективность составит YPF = (120/100)⋅(1,15 + (35⋅80 − 2360)/4000) эфф. мкмоль/Дж = 1,5 эфф. мкмоль/Дж. Что при умножении на потребляемые 35 Вт составит 52,5 эфф. мкмоль/с.

Если такой светильник опустить достаточно низко над грядкой микрозелени площадью 0,6 × 0,6 м = 0,36 м 2 и тем самым избежать потерь света в стороны, плотность освещения составит 52,5 эфф. мкмоль/с / 0,36м 2 = 145 эфф. мкмоль/с/м 2 . Это примерно вдвое меньше обычно рекомендуемых значений. Следовательно, мощность светильника необходимо также увеличить вдвое.

Прямое сравнение фитопараметров светильников разных типов

Сравним фитопараметры обычного офисного потолочного светодиодного светильника, произведенного в 2016 году, со специализированными фитосветильниками (рис. 7).


Рис. 7. Сравнительные параметры типичного натриевого светильника 600Вт для теплиц, специализированного светодиодного фитосветильника и светильника для общего освещения помещений

Видно, что обычный светильник общего освещения со снятым рассеивателем при освещении растений по энергетической эффективности не уступает специализированной натриевой лампе. Видно также, что фитосветильник красно-синего света (производитель намеренно не назван) сделан на более низком технологическом уровне, раз его полный КПД (отношение мощности светового потока в ваттах к мощности, потребляемой из сети) уступает КПД офисного светильника. Но если бы КПД красно-синего и белого светильников были одинаковы, то фитопараметры тоже были бы примерно одинаковы!

Также по спектрам видно, что красно-синий фитосветильник не узкополосен, его красный горб широк и содержит гораздо больше дальнего красного, чем у белого светодиодного и натриевого светильника. В тех случаях, когда дальний красный необходим, использование такого светильника как единственного или в комбинации с другими вариантами может быть целесообразно.

Оценка энергетической эффективности осветительной системы в целом:


Рис. 8. Аудит системы фитоосвещения

Следующая модель UPRtek - спектрометр PG100N по заявлению производителя измеряет микромоли на квадратный метр, и, что важнее, световой поток в ваттах на квадратный метр.

Измерять световой поток в ваттах - превосходная функция! Если умножить освещаемую площадь на плотность светового потока в ваттах и сравнить с потреблением светильника, станет ясен энергетический КПД осветительной системы. А это единственный на сегодня бесспорный критерий эффективности, на практике для разных осветительных систем различающийся на порядок (а не в разы или тем более на проценты, как меняется энергетический эффект при изменении формы спектра).

Примеры использования белого света

Описаны примеры освещения гидропонных ферм и красно-синим, и белым светом (рис. 9).


Рис. 9. Слева направо и сверху вниз фермы: Fujitsu , Sharp , Toshiba , ферма по выращиванию лекарственных растений в Южной Калифорнии

Достаточно известна система ферм Aerofarms (рис. 1, 10), самая большая из которых построена рядом с Нью-Йорком. Под белыми светодиодными лампами в Aerofarms выращивают более 250 видов зелени, снимая свыше двадцати урожаев в год.


Рис. 10. Ферма Aerofarms в Нью-Джерси («Штат садов») на границе с Нью-Йорком

Прямые эксперименты по сравнению белого и красно-синего светодиодного освещения
Опубликованных результатов прямых экспериментов по сравнению растений, выращенных под белыми и красно-синими светодиодами, крайне мало. Например, мельком такой результат показала МСХА им. Тимирязева (рис. 11).


Рис. 11. В каждой паре растение слева выращено под белыми светодиодами, справа - под красно-синими (из презентации И. Г. Тараканова, кафедра физиологии растений МСХА им. Тимирязева)

Пекинский университет авиации и космонавтики в 2014 году опубликовал результаты большого исследования пшеницы, выращенной под светодиодами разных типов . Китайские исследователи сделали вывод, что целесообразно использовать смесь белого и красного света. Но если посмотреть на цифровые данные из статьи (рис. 12), замечаешь, что разница параметров при разных типах освещения отнюдь не радикальна.


Рис 12. Значения исследуемых факторов в двух фазах роста пшеницы под красными, красно-синими, красно-белыми и белыми светодиодами

Однако основным направлением исследований сегодня является исправление недостатков узкополосного красно-синего освещения добавлением белого света. Например, японские исследователи выявили увеличение массы и питательной ценности салата и томатов при добавлении к красному свету белого. На практике это означает, что, если эстетическая привлекательность растения во время роста неважна, отказываться от уже купленных узкополосных красно-синих светильников необязательно, светильники белого света можно использовать дополнительно.

Влияние качества света на результат

Фундаментальный закон экологии «бочка Либиха» (рис. 13) гласит: развитие ограничивает фактор, сильнее других отклоняющийся от нормы. Например, если в полном объеме обеспечены вода, минеральные вещества и СО 2 , но интенсивность освещения составляет 30 % от оптимального значения - растение даст не более 30 % максимально возможного урожая.


Рис. 13. Иллюстрация принципа ограничивающего фактора из обучающего ролика на YouTube

Реакция растения на свет: интенсивность газообмена, потребления питательных веществ из раствора и процессов синтеза - определяется лабораторным путем. Отклики характеризуют не только фотосинтез, но и процессы роста, цветения, синтеза необходимых для вкуса и аромата веществ.

На рис. 14 показана реакция растения на изменение длины волны освещения. Измерялась интенсивность потребления натрия и фосфора из питательного раствора мятой, земляникой и салатом. Пики на таких графиках - признаки стимулирования конкретной химической реакции. По графикам видно что исключить из полного спектра ради экономии какие-то диапазоны, - все равно что удалить часть клавиш рояля и играть мелодию на оставшихся.


Рис. 14. Стимулирующая роль света для потребления азота и фосфора мятой, земляникой и салатом (данные предоставлены компанией Фитэкс)

Принцип ограничивающего фактора можно распространить на отдельные спектральные составляющие - для полноценного результата в любом случае нужен полный спектр. Изъятие из полного спектра некоторых диапазонов не ведет к значимому росту энергетической эффективности, но может сработать «бочка Либиха» - и результат окажется отрицательным.
Примеры демонстрируют, что обычный белый светодиодный свет и специализированный «красно-синий фитосвет» при освещении растений обладают примерно одинаковой энергетической эффективностью. Но широкополосный белый комплексно удовлетворяет потребности растения, выражающиеся не только в стимуляции фотосинтеза.

Убирать из сплошного спектра зеленый, чтобы свет из белого превратился в фиолетовый, - маркетинговый ход для покупателей, которые хотят «специального решения», но не выступают квалифицированными заказчиками.

Корректировка белого света

Наиболее распространенные белые светодиоды общего назначения имеют невысокую цветопередачу Ra = 80, что обусловлено нехваткой в первую очередь красного цвета (рис. 4).

Недостаток красного в спектре можно восполнить, добавив в светильник красные светодиоды. Такое решение продвигает, например , CREE . Логика «бочки Либиха» подсказывает, что такая добавка не повредит, если это действительно добавка, а не перераспределение энергии из других диапазонов в пользу красного.

Интересную и важную работу проделал в 2013–2016 годах ИМБП РАН : там исследовали, как влияет на развитие китайской капусты добавление к свету белых светодиодов 4000 К / Ra = 70 света узкополосных красных светодиодов 660 нм.

И выяснили следующее:

  • Под светодиодным светом капуста растет примерно так же, как под натриевым, но в ней больше хлорофилла (листья зеленее).
  • Cухая масса урожая почти пропорциональна общему количеству света в молях, полученному растением. Больше света - больше капусты.
  • Концентрация витамина С в капусте незначительно повышается с ростом освещенности, но значимо увеличивается с добавлением к белому свету красного.
  • Значимое увеличение доли красной составляющей в спектре существенно повысило концентрацию нитратов в биомассе. Пришлось оптимизировать питательный раствор и вводить часть азота в аммонийной форме, чтобы не выйти за ПДК по нитратам. А вот на чисто-белом свету можно было работать только с нитратной формой.
  • При этом увеличение доли красного в общем световом потоке почти не влияет на массу урожая. То есть восполнение недостающих спектральных компонент влияет не на количество урожая, а на его качество.
  • Более высокая эффективность в молях на ватт красного светодиода приводит к тому, что добавление красного к белому эффективно еще и энергетически.
Таким образом, добавление красного к белому целесообразно в частном случае китайской капусты и вполне возможно в общем случае. Конечно, при биохимическом контроле и правильном подборе удобрений для конкретной культуры.

Варианты обогащения спектра красным светом

Растение не знает, откуда к нему прилетел квант из спектра белого света, а откуда - «красный» квант. Нет необходимости делать специальный спектр в одном светодиоде. И нет необходимости светить красным и белым светом из одного какого-то специального фитосветильника. Достаточно использовать белый свет общего назначения и отдельным светильником красного света освещать растение дополнительно. А когда рядом с растением находится человек, красный светильник можно по датчику движения выключать, чтобы растение выглядело зеленым и симпатичным.

Но оправданно и обратное решение - подобрав состав люминофора, расширить спектр свечения белого светодиода в сторону длинных волн, сбалансировав его так, чтобы свет остался белым. И получится белый свет экстравысокой цветопередачи, пригодный как для растений, так и для человека.

Открытые вопросы

Можно выявлять роль соотношения дальнего и ближнего красного света и целесообразность использования «синдрома избегания тени» для разных культур. Можно спорить, на какие участки при анализе целесообразно разбивать шкалу длин волн.

Можно обсуждать - нужны ли растению для стимуляции или регуляторной функции длины волн короче 400 нм или длиннее 700 нм. Например, есть частное сообщение, что ультрафиолет значимо влияет на потребительские качества растений. В числе прочего краснолистные сорта салата выращивают без ультрафиолета, и они растут зелеными, но перед продажей облучают ультрафиолетом, они краснеют и отправляются на прилавок. И корректно ли новая метрика PBAR (plant biologically active radiation ), описанная в стандарте ANSI/ASABE S640 , Quantities and Units of Electromagnetic Radiation for Plants (Photosynthetic Organisms , предписывает учитывать диапазон 280–800нм.

Заключение

Сетевые магазины выбирают более лежкие сорта, а затем покупатель голосует рублем за более яркие плоды. И почти никто не выбирает вкус и аромат. Но как только мы станем богаче и начнем требовать большего, наука мгновенно даст нужные сорта и рецепты питательного раствора.

А чтобы растение синтезировало все, что для вкуса и аромата нужно, потребуется освещение со спектром, содержащим все длины волн, на которые растение прореагирует, т. е. в общем случае сплошной спектр. Возможно, базовым решением будет белый свет высокой цветопередачи.

Благодарности
Автор выражает искреннюю благодарность за помощь в подготовке статьи сотруднику ГНЦ РФ-ИМБП РАН к. б. н. Ирине Коноваловой; руководителю проекта «Фитэкс» Татьяне Тришиной; специалисту компании CREE Михаилу Червинскому

Литература

Литература
1. Son K-H, Oh M-M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes // Hortscience. – 2013. – Vol. 48. – P. 988-95.
2. Ptushenko V.V., Avercheva O.V., Bassarskaya E.M., Berkovich Yu A., Erokhin A.N., Smolyanina S.O., Zhigalova T.V., 2015. Possible reasons of a decline in growth of Chinese cabbage under acombined narrowband red and blue light in comparison withillumination by high-pressure sodium lamp. Scientia Horticulturae https://doi.org/10.1016/j.scienta.2015.08.021
3. Sharakshane A., 2017, Whole high-quality light environment for humans and plants. https://doi.org/10.1016/j.lssr.2017.07.001
4. C. Dong, Y. Fu, G. Liu & H. Liu, 2014, Growth, Photosynthetic Characteristics, Antioxidant Capacity and Biomass Yield and Quality of Wheat (Triticum aestivum L.) Exposed to LED Light Sources with Different Spectra Combinations
5. Lin K.H., Huang M.Y., Huang W.D. et al. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata) // Scientia Horticulturae. – 2013. – V. 150. – P. 86–91.
6. Lu, N., Maruo T., Johkan M., et al. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density // Environ. Control. Biol. – 2012. Vol. 50. – P. 63–74.
7. Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., О.С. Яковлева, А.И. Знаменский, И.Г. Тараканов, С.Г. Радченко, С.Н. Лапач. Обоснование оптимальных режимов освещения растений для космической оранжереи «Витацикл-Т». Авиакосмическая и экологическая медицина. 2016. Т. 50. № 4.
8. Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., Яковлева О.С., Знаменский А.И., Тараканов И.Г., Радченко С.Г., Лапач С.Н., Трофимов Ю.В., Цвирко В.И. Оптимизация светодиодной системы освещения витаминной космической оранжереи. Авиакосмическая и экологическая медицина. 2016. Т. 50. № 3.
9. Коновалова И.О., Беркович Ю.А., Смолянина С.О., Помелова М.А., Ерохин А.Н., Яковлева О.С., Тараканов И.Г. Влияние параметров светового режима на накопление нитратов в надземной биомассе капусты китайской (Brassica chinensis L.) при выращивании со светодиодными облучателями. Агрохимия. 2015. № 11.

Теги:

  • свет
  • освещение
  • фитосвет
  • растения
  • растения гика
  • светодиоды
  • качество жизни
Добавить метки

Сейчас, наверное, только глухой не слышал о светодиодных лампах и сверхъярких светодиодах. В среде радиолюбителей сверхъяркий светодиод уже давно стал объектом пристального изучения и главным элементом самодельных новаторских устройств. Да, это и не мудрено, сверхъяркие светодиоды интересны в первую очередь своей экономичностью и хорошими характеристиками по светоотдаче. Светодиоды обладают хорошей механической прочностью, не бояться вибрации и тряски. Не зря мощные светодиоды всё больше применяют в автомобилестроении.

Ещё одним важным положительным качеством светодиодов можно считать то, что они начинают излучать мгновенно после подачи питания. Люминесцентные лампы , например, в этом плане уступают светодиодам. Для долговечной работы люминесцентной лампы рекомендуется горячий запуск, когда происходит предварительный разогрев нитей накала. Лампа при этом включается спустя несколько секунд.

В начале девяностых годов фирма Nichia представила миру первый светодиод синего и белого цвета свечения. С тех пор началась технологическая гонка в производстве сверхъярких мощных светодиодов.

Сам по себе светодиод не может излучать белый свет, так как белый свет является суммой всех цветов. Светоизлучающий диод излучает свет строго определённой длины волны . Цвет излучения светодиода зависит от ширины энергетической запрещённой зоны перехода, где и происходит рекомбинация электронов и дырок.

Ширина энергетической запрещённой зоны в свою очередь зависит от материала полупроводника. Для получения белого света на кристалл синего светодиода наносят слой люминофора, который под действием синего излучения испускает жёлтый и красный свет. В результате смешения синего, жёлтого и красного получается белый свет.

Это одна из нескольких широко распространённых технологий получения белого света посредством светоизлучающих диодов.

Напряжение питания сверхъярких белых светодиодов, как правило, лежит в пределах от 2,8 до 3,9 вольт. Точные характеристики светодиода можно узнать из описания (datasheet).

Мощные сверхъяркие белые светодиоды хоть и доступны, но всё ещё дороги по сравнению с индикаторными светодиодами красного и зелёного цвета свечения, поэтому при использовании их в осветительных установках следует уделять внимание качественному питанию светодиодов .

Несмотря на то, что ресурс светодиодов довольно велик, любой светоизлучающий полупроводник очень чувствителен к перегрузкам по току . В результате перегрузок светодиод может сохранить работоспособность, но светоотдача его будет существенно меньше. В некоторых случаях частично рабочий светодиод может служить причиной выхода из строя и остальных, включенных совместно с ним светодиодов.

Чтобы исключить перегрузки светодиодов, а, следовательно, и выход их строя, применяются драйверы питания на специализированных микросхемах. Драйвер питания представляет собой не что иное, как стабилизированный источник тока. Для регулировки яркости светодиодов рекомендуется применять импульсную модуляцию.

Не исключено, что в скором времени производители мощных светодиодов будут встраивать чип стабилизатора тока непосредственно в конструкцию мощного светодиода, по аналоги с мигающими светодиодами (blinking led ), в которых встроен чип генератора импульсов.

Светодиод может работать десятки лет, но при условии, что светоизлучающий кристалл не будет сильно нагреваться вследствие протекания тока. В современных мощных светодиодах ток питания может достигать более 1000 mA (1 Ампер!) при напряжении питания от 2,5 до 3,6 4 вольт. Такими параметрами обладают, например, мощные светодиоды Lumileds . Для отвода избыточного тепла в таких светодиодах применяется алюминиевый радиатор, конструктивно объединённый с кристаллом светодиода. Производители мощных белых светодиодов также рекомендуют устанавливать их на дополнительные радиаторы. Вывод очевиден – хочешь длительной работы светодиода – обеспечь хороший отвод тепла.

При монтаже мощных светодиодов нужно помнить, что теплопроводящее основание светодиода не является нейтральным электрически . В связи с этим необходимо обеспечить электрическую изоляцию оснований светодиодов при монтаже на общем радиаторе.

Так как типовое напряжение питания сверхъярких светодиодов составляет 3,6 вольт, то такие светодиоды можно легко использовать для светодиодных фонариков совместно с аккумуляторными батарейками формата AA . Для питания светодиода понадобятся 3 последовательно включенных аккумуляторных батарейки напряжением по 1,2 вольт. Суммарно напряжение составит как раз необходимое 3,6 вольт. В этом случае не понадобиться никаких преобразователей напряжения.

Всё ещё высокая цена мощных светодиодов связана со сложностью изготовления мощного светодиода. Стоимость современных технологических установок, на которых производят кристаллы мощных светодиодов методом эпитаксиальной технологии, составляет 1,5 – 2 млн. долларов!

Конструктивно мощный светодиод представляет довольно сложное устройство.

На рисунке показано устройство сверхъяркого светодиода Luxeon III фирмы Lumileds, мощностью 5 Ватт .

Как видно из рисунка, современный сверхъяркий светодиод представляет собой сложное устройство, требующее многих технологических этапов при изготовлении.

В настоящее время производители мощных светодиодов пробуют различные технологии изготовления светодиодов с применением различных материалов и компонентов. Всё это направлено на снижение себестоимости светодиодов и обеспечения необходимого качества продукта.

Следует заметить, что мощный светодиод, изготовленный с нарушением технологического процесса и применением некачественных материалов, спустя некоторое время работы теряет свою расчётную светоотдачу. Как правило, такие светодиоды дешевле аналогов. Дешёвые светодиоды в течение первых 4000 часов работы теряют свою яркость на 35% . Связано это с тем, что желтеет эпоксидный материал светодиодной колбы, а также снижается излучающая способность синего светодиодного чипа и нанесённого на него слоя люминофора. У качественных светодиодов за 50 000 часов наработки яркость снижается не более чем на 20% .