Пайка сварочных швов в короткие сроки. Сварка-пайка высокопрочных сталей. Настраиваемся на работу

Пайка - один из наиболее известных методов соединения металлов. Однако применявшиеся до последнего времени способы пайки вследствие низкой производительности, недостаточной надежности соединения, сложности технологического процесса и других недостатков использовали относительно редко.

В последнее время появились новые методы пайки, использующие различные виды электрического нагрева: т. в. ч., электронный луч, нагрев в термических печах, пайка с применением ультразвука и др. Эти методы нагрева в сочетании с такими защитными средами, как вакуум, инертные и восстановительные газы (водород, СО. и др.), специальные припои, не требующие флюсов, позволили значительно улучшить качество паяных изделий и повысить производительность процесса пайки.

Новые методы пайки дают возможность использовать деталь в изделиях без последующей механической обработки.

С помощью новых методов пайки можно соединять тугоплавкие металлы и металлы, обладающие особыми свойствами.

Из таких металлов могут быть изготовлены в условиях вакуума тонкостенные конструкции, подвергающиеся воздействию высоких температур. Пайка в современном состоянии удовлетворяет всем требованиям производства с точки зрения экономики, так как использование паяных соединений способствует уменьшению трудоемкости и снижению стоимости изделия.

Пайка стала одним из важнейших технологических процессов соединения металлов во многих отраслях металлообрабатывающей промышленности. Паяные соединения надежно работают в ответственных изделиях в авиационной, радиотехнической, автомобильной, приборной и других отраслях промышленности.

Пайкой называется процесс получения неразъемного соединения материалов с нагревом ниже температуры их автономного расплавления путем смачивания, растекания и заполнения зазора между ними расплавленным припоем и сцепления их при кристаллизации шва.

Пайку металлов следует проводить при определенной температуре и в средах, обеспечивающих хорошее смачивание припоем металла и взаимную диффузию жидкого припоя и металла соединяемого изделия. При этом должны быть созданы условия для возникновения капиллярных явлений. Последние обеспечивают проникновение жидкого припоя в зазоры между соединяемыми изделиями. Припой проникает в зазоры между соединяемыми деталями, при охлаждении кристаллизуется и образует прочную связь. Нагревать изделие и расплавлять припой можно дугой, теплотой, выделяющейся в электрическом контакте, в печах сопротивления, индукционным методом, электронным лучом, газовым пламенем, погружением в соляные ванны или жидкие припои и т. п.

Пайка имеет ряд преимуществ по сравнению со сваркой . Во многих случаях при пайке расходуется меньшее количество теплоты. Пайка не вызывает существенных изменений химического состава и механических свойств основного металла. Как правило, остаточные деформации в паяных соединениях значительно меньше, чем в сварных. Поэтому возможно соблюдение точных размеров паяных конструкций без дополнительной обработки. Пайкой соединяются углеродистые и легированные стали, чугун, цветные металлы и сплавы, благородные металлы и т. д., а также разнородные материалы. Процесс пайки легко механизируется и автоматизируется.

Большинство способов пайки осуществляют с применением различных припоев и лишь в тех случаях, когда в процессе пайки между металлами могут образоваться легкоплавкие эвтектики, пайка возможна без специального припоя.

К припоям предъявляют ряд требований общего характера. Припой должен хорошо растекаться по поверхности основного металла, смачивать и растворять его, легко заполнять зазоры между деталями, обеспечивать необходимую прочность соединения и т. п.

Припои применяют в виде лент, паст, прутьев. Особенно распространены припои в виде проволочных контуров и прокладок из фольги, штампуемых в соответствии с поверхностью соединяемых частей.

Широкое применение в качестве припоев получили высокотемпературные припои - сплавы на основе серебра, алюминия, меди и др., обладающие, как правило, температурой плавления выше 450-500° С (723-773 К). Медно-цинковые припои ПМЦ 36, ПМЦ 48, ПМЦ 54 имеют предел прочности σ в = 21 35 кгс/мм 2 (206,0 - 343,2 МН/м 2), относительное удлинение до 26%, рекомендуются для пайки изделий из меди, томпака, латуни, бронзы. Серебряные припои имеют температуру плавления 740-830° С (413-1103 К). Согласно ГОСТ 8190-56 марки припоев разделяют в зависимости от содержания в сплавах серебра, которое изменяется в пределах от 10 (ПСр 10) до 72% (ПСр 72). В них также содержатся цинк, медь и в небольшом количестве свинец. Эти припои применяют для пайки тонких деталей, соединения медных проводов и в случаях, когда место спая не должно резко уменьшать электропроводность стыковых соединений.

Низкотемпературные припои имеют температуру плавления ниже 450-400° С (723-673 К). Они обладают небольшой прочностью. Их применяют для пайки почти всех металлов и сплавов в разных их сочетаниях. В большинстве случаев низкотемпературные припои содержат значительный процент олова.

Низкотемпературные оловянно-свинцовые припои (ГОСТ 1499-70) имеют верхнюю критическую точку плавления 209-327° С (482-600 К). Олово имеет точку плавления 232° С (505 К). Его предел прочности при растяжении 1,9 кгс/мм 2 (18,6 МН/м 2), относительное удлинение 49%, НВ 6,2 кгс/мм 2 (60,8 МН/м 2). Оловянно-свинцовые припои ПОС-90, ПОС-61, ПОС-40 и др. применяют при пайке медных аппаратов, авиационных радиаторов, изделий из латуни и железа, медных проводов и т. д.

Образование качественного паяного соединения в значительной степени зависит от возможности наиболее полного удаления с поверхности металла окисных, адсорбированных газовых и жидких пленок. В практике пайки для удаления поверхностных пленок применяют различного рода флюсы, восстановительную атмосферу или вакуум. В последнее время для этой цели успешно используют механическое разрушение пленок с помощью ультразвуковых упругих колебаний.

Флюсы при пайке имеют несколько назначений. Они защищают основной металл и припой от окисления, растворяют или восстанавливают образовавшиеся окислы, улучшают смачивание поверхностей, способствуют растеканию припоев. Флюсы можно применять в твердом, жидком и газообразном виде (в виде порошков, паст, растворов газов). Роль флюса выполняют некоторые специальные газовые атмосферы и вакуум, которые также могут способствовать восстановлению окислов и улучшению условий смачивания. Флюсующее действие оказывают в некоторых случаях отдельные составляющие, входящие в состав припоев. Например, фосфористые припои не требуют флюсов при пайке медных сплавов.

Пайку можно вести при общем или местном нагреве конструкции. При общем нагреве изделие помещают в печь или погружают в соляную или металлическую ванну. В этих условиях изделие прогревается равномерно. Такой процесс целесообразен для пайки изделий относительно небольших размеров. При местном нагреве подогревают лишь часть конструкции в зоне спая.

Пайка при помощи паяльника. Наиболее известный и широко используемый метод пайки низкотемпературными припоями - пайка паяльниками. В усовершенствованных конструкциях паяльников обеспечивается механизированная подача припоя и его дозировка.

Пайка газовым пламенем. Газовым пламенем паяют вручную и механизированным способом. Источником нагрева служит пламя обычных горелок с применением в качестве горючего относительно невысококалорийного газа, например пропана. Газовое пламя лишь частично предохраняет место спая от окисления, поэтому рекомендуется применение флюсов и паст.

В некоторых случаях флюсы подаются в газообразном состоянии непосредственно в пламя. При газовой пайке возможно применение высокотемпературных и легкоплавких припоев.

Для крупных деталей иногда применяют процесс пайки, называемый «сварка бронзой». В этом случае припоем служат латунные стержни, изделие нагревают кислородно-ацетиленовой горелкой. Сначала ею подогревают кромки, насыпают флюс, облуживают их тонким слоем припоя, а затем заполняют припоем весь объем разделки. Сварку бронзой используют при ремонте чугунных и стальных деталей.

Появилась задолго до изобретения электрической сварки. Ее использовали в Древнем Риме и Вавилоне, о чем говорят археологические раскопки.

За это время технологии усовершенствовались, и появились новые виды пайки, в которых для нагрева металла используется электрический ток, пламя газовой горелки, энергия лазера или иные источники тепловой энергии.

Капиллярный вид пайки – самый распространенный. Многие, применяя его, даже не подозревают о таком названии. Суть технологии заключается в следующем.

Припой расплавляют, он нагревается и заполняет собой пространство между двумя подготовленными деталями. Смачивание поверхности деталей и удержание припоя происходит во многом благодаря эффекту капиллярности.

Капиллярный вид пайки распространен в быту и на различных производствах. Для его проведения потребуется паяльник или горелка. По сути, любой вид пайки можно считать в определенной мере капиллярным, поскольку в каждом присутствует капиллярное смачивание поверхностей заготовок жидким припоем.

Диффузионный

Этот вид паяния отличается от остальных длительностью процесса, поскольку на диффузию требуется время.

Припой внутри зоны шва выдерживается при определенной температуре дольше, чем, скажем, при обычном капиллярном виде пайке. Соединение двух заготовок происходит за счет диффузии припоя и спаиваемых металлов.

Сам процесс диффузии заключается в проникновении молекул одного вещества в структуру другого вещества. Спайка происходит на молекулярном уровне и дает возможность получить более прочный шов.

Диффузионный вид требует строго соблюдения температурного и временного режима. Температура нагрева в зоне пайки всегда выше, чем температура плавления припоя.

Контактно-реакционный

Вид пайки под названием «контактно-реакционный» или «реактивный» означает процесс сплавления при контакте двух деталей из разных металлов.

Происходит фазовый переход металла из твердого в жидкое состояние с последующим отвердением и сплавлением. Часто такое соединение осуществляют через тонкую прослойку, которая нанесена на одну из заготовок гальваническим или иным способом.

Используются легкоплавкие материалы – эвтектики. Так можно соединить серебро и медь, где между деталями будет образован медно-серебрянный сплав. Проводят пайку олова и висмута, серебра и бериллия, графита и стали.

Можно спаивать алюминий с другими материалами через прослойку меди или кремния. Соединение получается прочным, время пайки занимает доли секунд.

Реакционно-флюсовой

В основе реактивно-флюсового вида пайки лежит химическая реакция, при которой из флюса при соединении с металлом образуется припой. Это хорошо видно, когда между собой соединяются алюминиевые детали.

Для их стыковки применяется флюс на основе хлористого цинка. При нагреве цинк начинает взаимодействовать с алюминием, превращаясь в металлический припой.

Он заполняет собой все пространство зазора, делая место зоны пайки прочным соединением. При этом очень важно точно соблюсти пропорции наносимого флюса. Его должно быть много, чтобы чистый цинк в необходимом количестве мог выделиться из флюсового порошка.

Иногда при этом виде пайки приходится добавлять в небольших количествах, как дополнение к основному процессу. Обычно это делают, если две заготовки соединяются внахлест.

Пайка-сварка

Такое название технология получила потому, что сам процесс очень сильно напоминает сварку металла с присадочным материалом (проволокой или порошком).

Но в данном случае вместо присадки используется припой. Этот вид чаще всего используют для того, чтобы заделать дефекты и изъяны на поверхностях металлических деталей (литых).

Сам процесс можно проводить разными способами:

  • пайка в печах;
  • окунанием в ;
  • сопротивлением с помощью электрического тока;
  • индукционным способом;
  • радиационным;
  • с помощью паяльников и газовых горелок.

Некоторые виды появились сравнительно недавно, еще исследуются и дорабатываются.

В печах

Первый вариант обеспечивает равномерное распределение припоя по дефектным участкам детали и равномерное прогревание, что особенно важно, когда приходится паять крупногабаритные заготовки со сложной конфигурацией.

При этом разогрев в печи может проходить одним из многих существующих способов, начиная от нагрева пламенем, и до сложно технологических процессов, таких как индукция, электросопротивление.

Конструкция самих печей отличается друг от друга лишь подами, на которые укладывают паяемые заготовки. Для крупных деталей используются печи, в которых под не движется, а для маленьких – подвижные в виде конвейеров на роликах.

Главная задача этого вида пайки – создать внутри печи специальную газообразную субстанцию. Пайка в печах может быть полностью механизирована, что ведет к повышению производительности труда. А для производств с массовым выходом готовой продукции это идеальный вариант.

Применение индукции и сопротивления

Что касается индукционного вида, то для него используют токи высокой частоты. Электричество пропускается через спаиваемые детали, отчего они и нагреваются.

Здесь реализуются два способа пайки: стационарная и с перемещением детали или индуктора. В случае соединения крупногабаритных заготовок используется вторая технология.

Способ пайки сопротивлением чем-то схож с индукционным видом. Просто в этой технологии ток пропускается и через заготовки, и через паяльный элемент. То есть, соединяемые детали становятся частью электрической цепи.

Проводят такой процесс в электролитах или в специальных контактных машинах, действие которых очень похоже на стандартную электросварку. Контактные машины обычно используются в производствах, где необходимо паять между собой изделия из тонкого листового металла.

Пайка же в электролитах используется сегодня не часто за счет сложности настройки параметров технологического процесса . Ведь процесс проходит по принципу теплового эффекта, возникающего между катодом (спаиваемые детали) и анодом.

Вокруг заготовок образуется водородная оболочка, у которой очень высокое электрическое сопротивление. Отсюда и выделение большой тепловой энергии.

Погружение в ванну

Пайка с погружением проводится или в среде расплавленного припоя или в массе специальных солей. Последний вид пайки – это быстро проводимая операция за счет непосредственного нагрева заготовок от солей, которые выполняют функции и нагревательного элемента, и флюса. Что касается погружения в припой, то необходимо отметить возможность полного или частичного погружения.

Радиационный метод

Радиационный вид пайки производится за счет мощного светового потока, который формируется кварцевой лампой, лазером или катодным расфокусированным лучом.

Технология появилась относительно недавно, но показала, что таким способом можно достигать высокого качества пайки двух металлических заготовок. К тому же появилась реальная возможность контролировать процесс и по степени нагрева, и по временным срокам. При этом лазер удаляет оксидную пленку с припоя и с металла, что гарантирует высокое качество паяного шва.

Газовая оболочка в зоне соединения, образорванная за счет нагрева металлов, дает возможность при соединении не использовать флюсы. Поэтому, когда сегодня говорят о пайке без флюса, подразумевают лазерную технологию.

Горелка и паяльник

Что касается пайки горелками, то чаще всего применяются две технологии, которые, по сути, ничем не отличаются одна от другой. Происходит просто нагрев двух деталей и припоя, уложенного между ними в зазор.

В первом способе – за счет сгорания газа, во втором – за счет образования плазмы (это сгораемый газ, который движется тонкой струей с большой скоростью). Необходимо отметить, что способ с газовыми горелками считается универсальным.

Горелки, испускающие поток плазмы, работают при высоком температурном режиме. А это позволяет паять между собой детали из титана, молибдена, вольфрама и прочие тугоплавкие материалы.

Сложность этой технологии заключается в том, что настроить электрическую дугу под определенную температуру нагрева (до определенной точности) практически невозможно.

Пайка паяльником используется давно. Если еще 5-10 лет назад можно было говорить только об электрических приборах или нагреваемых от огня, то сегодня предложений куда больше.

Хотелось бы отметить паяльники, работающие от ультразвука. То есть, сам ультразвук имеет отношение к процессу пайки лишь с позиции разрушения оксидной пленки.

Поэтому и появилась возможность паять различные металлы в воздушном окружении без флюсовых материалов. Непосредственно пайка происходит от нагрева припоя.

Вакуумный

Пайка в вакууме и сегодня еще используется не всегда и не везде. Сложность данного вида заключается в том, что необходимо в зоне паяния создать разряженную атмосферу без воздуха.

Как известно, присутствующий в воздухе кислород является причиной образования оксидной пленки, которая покрывает собою металлические заготовки и припой.

Пленка очень тугоплавка, при пайке теряются температурные градусы для нагрева соединяемых деталей. Поэтому все ученые до сих пор и ищут способы, как удалить оксидное покрытие или провести процесс без него. Пайка в вакууме – один из таких вариантов.

Препятствуют внедрению вакуумного вида в производство такие факторы:

  • низкая производительность процесса, потому что приходится нагревать каждую отдельную деталь;
  • таким способом можно паять лишь заготовки небольших размеров;
  • сложность создания станков и дополнительного оборудования;
  • сложность проведения процесса пайки.

Однако если говорить о космосе, где отсутствует атмосфера, то вакуумный вид считается весьма перспективным.

Селективный

Нельзя сказать, что селективный вид пайки принципиально отличается от капиллярного. Точно также в нем применяют припой и нагрев. Но расплавляют припой только в выборочных местах (локальных точках), на которые планируется прикрепить элементы.

Селективную пайку применяют в основном для изготовления плат и выводов штыревых компонентов. Она схожа с волновым методом, применяемым для пайки smd-чипов.

Установка селективной пайки – оборудование, относящееся к категории полуавтоматов. Оно не дешевое, но экономит расходные материалы почти в десять раз, по сравнению с волной, поэтому распространяется все шире и шире.

Температурный режим и материалы

Классификация процессов пайки основывается на методах проведения операций, условиях, при которых получают соединения, и на видах расходных материалов. Понятия и виды пайки подробно описывает ГОСТ 17325.

Пайку называют высокотемпературной или твердой, если припой разогревается до температуры 450 ℃ и выше. В противном случае приходится иметь дело с низкотемпературным видом (мягким).

Для низкотемпературного вида применяют легкоплавкие припои. К ним относятся сплавы олова и свинца, висмута, галлия, индия. К тугоплавким принадлежат медно-серебряные, медно-цинковые припои.

В связи с повелением новых материалов и требований экологической безопасности, технологии пайки постоянно меняются. Свинцовые припои применяют все меньше, устанавливают дымоуловители, разрабатывают лазерное и ультразвуковое оборудование.

Немалую роль в развитии пайки играет внедрение роботизированных систем, позволяющих значительно ускорить работу.

Работники авторемонтных мастерских, монтажники и другие специалисты по сварочным работам сегодня активно обращаются к пайке сварочным полуавтоматом. За подобным методом будущее, технология во многом сравнима со сваркой MIG/MAG. И отличается, в основном, применяемой присадочной проволокой сплошного сечения, а также тем, что при пайке MIG не происходит расплавления основного материала. Подробнее о положительных моментах метода, его нюансах и сферах его применения предлагаем узнать из нашей статьи.

Что такое пайка полуавтоматом

Пайка методом MIG в инертном газе, или MIG-пайка в защитном газе, как он иногда называется в соответствии с имеющимися международными стандартами, представляет собой процесс пайки твёрдым припоем в виде медной проволоки. Электрическая дуга устанавливается между постоянно плавящимся припоем из проволоки и свариваемым металлом. Подаваемый газ защищает дугу и расплавленный припой от воздействия окружающего воздуха, а именно кислорода, который имеется в воздухе и который стремительно окисляет расплавленный металл и в разы снижает качество сварки.

Особенности пайки полуавтоматом

Пайка полуавтоматом высокотехнологичный процесс, имеющий свои особенности.

  • Осуществляя пайку методом MIG/MAG, в качестве электрода нужно использовать специальную сварочную проволоку из бронзы , включающую алюминий или кремний. К примеру, CuSi3 , или более качественный аналог , 19.30, 19.40. Проволока на основе бронзы или меди достаточно дорогостоящая, и разница в цене между европейского производства или к примеру, китайского не будет существенной. Если MAG сварка (в атмосфере активного газа) характеризуется обилием брызг, наличием пористости, нестабильной дугой и сильным парообразованием, то в процессе MIG пайки, напротив, основной металл не плавится, поэтому цинк испаряется в гораздо меньшей степени. Так происходит за счет того, что температура плавления бронзовой проволоки намного меньше, чем у стали, и поэтому свариваемые детали не расплавляются. Из-за низкого тепловложения снижается риск деформации, даже на очень тонких листах от 0,3 миллиметров толщиной. То есть процесс, фактически являясь пайкой, обеспечивает скорость работы и прочность соединений как при сварке.
  • В связи с тем, что при пайке полуавтоматом тонкий металл не проплавляется, можно спаять листы стали с покрытием (фосфатированным, гальванизированным, алюминизированным) и без покрытия, листы из двухслойной стали и из нержавейки.
  • Получившийся шов является крепким, Такое паяное соединение имеет более высокую механическую прочность, если сравнивать со швом, образованным в процессе MAG сварки. Степень термической деформации деталей в ходе паяного процесса существенно ниже, чем при сварке, поэтому на готовом изделии меньше заметно коробление. Шов практически не подвержен коррозии, так как цинковый слой оказывается целым даже в месте сварного шва. Еще одним достоинством такой технологии является хорошая способность по перекрытию зазора.
  • Паять рекомендуется в «точечном», импульсном режиме или методом «углом назад», при котором сварщик ведет электрод слева направо. В обоих случаях необходимо соблюдать «короткую» дугу.

В чем принцип метода пайки полуавтоматом и разница от MIG сварки?

Основной принцип пайки-сварки МИГ-МАГ заключается в том, что металлическая проволока в ходе процесса подается посредством сварочной горелки и расплавляется под воздействием электрической дуги. Если говорить о разнице технологий сварки и пайки, то в первом случае разрушенное цинковое покрытие образует шлак с расплавленным металлом шва, а также различные раковины и поры. Это говорит о пониженном качестве шва и отсутствии цинкового покрытия в месте сварки. Приходится отправлять детали на гальваническую операцию повторно с целью восстановления антикоррозионного покрытия. Открытие метода МИГ-пайки позволило избежать таких проблем.

Метод MIG-пайки отличается от метода полуавтоматической-сварки в среде защитных газов еще и видом применяемой проволоки. Для MIG –braizing используют медную проволоку CuSi3. Из-за небольшой температуры плавления, как говорилось выше, основной металл не плавится. Цинковое покрытие в итоге образует на ее поверхности химическое соединение, защищающее сварочный шов от коррозийных процессов.

Настраиваемся на работу

Прежде, чем начать работу, важно корректно настроить сварочный полуавтомат :

  1. Определите силу сварочного тока в зависимости от толщины свариваемого металла. В инструкции к агрегату представлена таблица соответствия этих величин. В случае недостатка сварочного тока полуавтомат сваривает не достаточно хорошо.
  2. По имеющейся инструкции определите требуемую скорость подачи сварочной проволоки. Этот показатель возможно отрегулировать, воспользовавшись сменными шестернями в агрегате. Он напрямую будет влиять на скорость наложения свариваемого шва. Сегодня в продаже представлены модели, оснащенные специальными коробками скоростей.
  3. Настройте источник тока на нужные вам параметры (напряжение и силу тока). Рекомендуем проверить ваши настройки на каком-либо примере. Основанием того, безошибочности действий, устойчивая сварная дуга, нормальное формирование валика. В этом случае уже можно действовать на основном материале.
  4. Настройка проволоки не вызовет затруднений. Ее поступление по специальному шлангу в мундштук либо в обратном направлении обусловлено положением рычага, который вы увидите на аппарате.
  5. Важным моментом является и регулировка расхода защитного газа. Для этого надо медленно открыть вентиль, и выкрутить его до упора. Это необходимо для того, чтобы из вентиля не происходило утечек. Затем нужно нажать на клавишу, находящуюся на рукояти сварочной горелки. Проволока должна остаться «стоять», а газовый клапан открыться. Будет слышно лёгкое шипение газа, который выходит из сопла газовой горелки. В это время расход газа (его величину можно видеть на манометре по шкале расхода) должен равняться 8 -10 л в мин. Это оптимальный показатель при пайке металла толщиной 0,8мм. Поэтому нужно скорректировать величину расхода газа исходя из вашей задачи.

Где чаще всего применяется MIG пайка?

Данная технология имеет широкий диапазон применения в различных областях.

Автосервис и автомобилестроение. Пайка MIG используется и в ремонте автокузовов, поскольку цинковое покрытие стальных листов при этом не повреждается. В крупносерийном производстве автомобилей этот метод применяют как в установках с ручным управлением, так и в полностью автоматизированных системах.

Кроме того, к пайке сварочным полуавтоматом прибегают для различных целей малые и средние промышленные предприятия, осуществляя:

  • монтаж систем кондиционирования, вентиляции и охлаждения,
  • выпуск легких металлоконструкций, элементов фасадов и кровли, труб, корпусов электроагрегатов, дымоходов.

Для пайки подходят все сварочные позиции в среде защитного газа и все виды сварочных швов. Швы в вертикальном и потолочном положении получаются одинаково безупречными при должном умении обращаться со сварочной горелкой. Благодаря незначительному тепловложению метод эффективен как при соединении листов из нелегированных сталей и оцинкованных листов, так и листов хромоникелевой.

Какое оборудование и материалы подойдут для пайки полуавтоматом

Материалы для пайки полуавтоматом:

  • проволока - медь с добавками,
  • газ - аргон.

Необходимость в применении каких-либо стандартных флюсов, используемых в стандартных технологиях сварки и способных вызывать серьезные проблемы, отсутствует. Дуга самостоятельно активизирует поверхность.

  1. Проволока при данном методе является одновременно и токопроводящим электродом, и присадочным материалом.
  • Производя МИГ-пайку оцинкованных деталей, наиболее часто пользуются проволокой SG-CuSi3. Её достоинство заключается в незначительной твердости паяного шва, что позволяет без труда осуществлять механообработку. За счет присутствия в составе проволоки 3% кремния существенно повышается жидкотекучесть наплавляемого материала.
  • Медная проволока состава SG-CuSi2Mn также применяется для пайки оцинкованных деталей, но наплавленный материал довольно жёсткий, поэтому последующая механообработка усложняется.
  • Сварочные проволоки SG-CuAL18Ni2 и SG-CuAL18 используют, если необходимо спаять сталь с алюминизированным покрытием.

Сварочные проволоки для MIG-пайки более мягкие в сравнении со стальными, поэтому механизм подачи проволоки должен быть 4-х роликовым, оснащенным гладкими полукруглыми канавками. Для небольшого трения в шланговом механизме горелки нужно применять тефлоновый направляющий канал и массивные токосъёмники.

  1. Как правило, в процессе пайки в качестве защитного газа используется аргон с небольшими добавками кислорода и углекислоты. Защитный газ, подаваемый в зону сварки, защищает дугу и сварочную ванну с расплавленным металлом.

Наш интернет-магазин предлагает ознакомиться с большим ассортиментом сварочного оборудования, используемого для MIG-пайки.

  • Модели с уже заложенной функцией полуавтоматической пайки. Чаще всего, такие инверторные аппараты отличаются упрощенным способом настройки, который подходит для неопытных сварщиков и углубленным - для настоящих профессионалов.
  • Модели, пайка которыми возможна, хотя специальные программы по ней и не заложены, тут усложняется процесс настройки аппарата.

Қазақстан Республикасының Министерство

Білім және ғылым образования и науки

министрлігі Республики Казахстан

Д. Серікбаев атындағы ВКГТУ

ШҚМТУ им. Д. Серикбаева

УТВЕРЖДАЮ

декан факультета МиТ

_______________2014 г.

Пісіру мен дәнекерлеу әдістері

Зертханалық жұмыстар бойынша әдістемелік

нұсқаулар

Специальные методы сварки и пайка

Методические указания по лабораторным

(практическим) работам

Специальность: 5В071200, «Машиностроение»

Специализация: «Технология и оборудование сварочного производства»

Усть-Каменогорск

Методические указания разработаны на кафедре машиностроения и технологии конструкционных материалов на основании ГОСО РК 3.08.338 – 2011 для студентов специальности 5В071200 «Машиностроение».

Обсуждено на заседании кафедры «М и ТКМ»

Зав. кафедрой

Протокол № от 2014г.

Одобрено методическим советом факультета машиностроения и транспорта

Председатель

Протокол № ____ от _______________ 2014г.

Разработал

Должность профессор

Нормоконтролер

В методических указаниях представлены полные описания лабораторно-практических работ .

Каждая работа состоит из наименования, целей и задач, теоретической части изучаемого вопроса и рекомендаций по практическому выполнению с указанием итоговой таблицы или формы графика. Кроме того, указаны требования к отчету по работе и дан перечень основных вопросов для самопроверки.


1 ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ГАЗОВОЙ СВАРКИ

1.1 Цель работы

Целью лабораторной работы является изучение:

Процесса сварки;

Техники сварки;

Устройства сварочного поста;

Назначения сварочных приборов и приспособлений.

1.2 Оборудование, приспособления, инструмент

Присадочная проволока;

Газогенератор;

Газовая горелка;

Газовый резак;

Спецодежда.

При газовой сварке для расплавления кромок соединяемых частей и вводимого присадочного материала используют тепло, выделяемое при сгорании горючих газов (ацетилен, пропан, бутан, пары керосина, водород и т. д.) в технически чистом кислороде. При этом максимальные температуры пламени равны соответственно 3100, 2750, 2500, 2400, 21000С. Наибольшее распространение получила ацетилено-кислородная сварка в связи с ее экономичностью и эффективностью при максимальном качестве соединений.

1.3.1 Кислород

Для сварочных работ используют газообразный кислород, который получают из воздуха методом его глубокого охлаждения (сжижения). Кислород поставляют к месту потребления в стальных баллонах голубого цвета под давлением 15МПа или в жидком виде – в специальных сосудах с хорошей теплоизоляцией. Для превращения жидкого кислорода в газ используют газификаторы или насосы с испарителями для жидкого кислорода.

Кислород имеет высокую химическую активность, образуя соединения со всеми химическими элементами, кроме инертных газов. Реакции соединения с кислородом протекают с выделением большого количества тепла.

При соприкосновении чистого газообразного кислорода с органическими веществами, маслами, жирами может произойти их самовоспламенение. Поэтому всю кислородную аппаратуру необходимо тщательно обезжиривать. Кислород способен образовывать в широких пределах взрывчатые смеси с горючими газами

1.3.2 Ацетилен (С2Н2)

Ацетилен является основным горючим газом для газовой сварки и резки металлов , температура его пламени при сгорании в смеси с технически чистым кислородом достигает 31500С (при избытке кислорода 34500С).

Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим запахом.

При использовании ацетилена необходимо учитывать его взрывоопасные свойства. Температура самовоспламенения ацетилена колеблется в пределах 240-6300С и зависит от давления и присутствия в нем различных веществ.

Повышение давления существенно снижает температуру самовоспламенения ацетилена.

Ацетилен с воздухом образует взрывоопасные смеси в пределах от 2,2 до 81% ацетилена по объему при нормальном атмосферном давлении, а с технически чистым кислородом – в пределах от 2,3 до 3% ацетилена. Наиболее взрывоопасны смеси, содержащие 7 – 13% ацетилена.

Присутствие окиси меди снижает температуру воспламенения ацетилена до 2400С. Поэтому категорически запрещается при изготовлении ацетиленового оборудования применение сплавов, содержащих более 70% меди.

Взрывоопасность ацетилена понижается при растворении его в жидкостях. Особенно хорошо он растворяется в ацетоне . В одном объеме технического ацетона при 200С и нормальном атмосферном давлении можно растворить до 20 объемов ацетилена. Растворимость ацетилена в ацетоне увеличивается с увеличением давления и понижением температуры.


Ацетилен получают при разложении водой карбида кальция (СаС2) по реакции

Непосредственно на рабочем месте газосварщика аустилен либо находится в баллонах белого цвета, либо получают из карбида кальция в газогенераторе.

1.3.3 Кислородно-ацетиленовое пламя

Строение аустилено-кислородного пламени показано на рисунке 1. Оно характерно также для большинства газокислородных смесей.

1 – ядро; 2 – восстановительная зона; 3 – факел пламени

Рисунок 1 – Схема строения газокислородного пламени.

Ядро 1 пламени состоит из смеси холодных газов с четко выраженными границами. В зоне 2 ацетилен сгорает в чистом кислороде при их соотношении 1:1 по реакции

Эта зона характеризуется восстановительной атмосферой за счет наличия СО и Н2 и максимальной температурой 31500С. При плавлении и сварке этой зоной процесс протекает эффективно и с минимальным окислением металла шва.

В наружной зоне продукты неполного сгорания дожигаются за счет кислорода окружающего воздуха по реакции

При этом формируется факел пламени 3, который используется для дополнительного подогрева свариваемых кромок и шва.

В зависимости от соотношения газов в смеси пламя может быть нормальным (рисунок 1), науглераживающим (ацетиленовым) и окислительным (рисунок 2).

а) – нормальное; б – науглероживающее; в - окислительное

Рисунок 2 – Виды ацетилено-кислородного пламени.

При избытке ацетилена (рисунок 2.б) ядро увеличивается, приобретает расплывчатые очертания и начинает коптить. Такое пламя используется при сварке высокоуглеродистых сталей и чугунов. При избытке кислорода ядро пламени укорачивается и заостряется. Такое пламя, несмотря на более высокую температуру в 34500С, вызывает окисление компонентов сплавов и для сварки не должно использоваться.

1.3.4 Способы сварки

В зависимости от направления перемещения горелки и присадочного прутка по шву различают левый и правый способы сварки. При левом способе (рисунок 3.а) впереди перемещается присадочный пруток, а за ним горелка. Левый способ более простой и применяется для сварки малых толщин до 3 мм.

а – левый; б – правый; 1 – присадочный пруток; 2 – газовая горелка

Рисунок 3 – Способы газовой сварки

При правом способе впереди перемещается горелка, а за ней присадочный пруток (рисунок 3.б). Правый способ сложнее, но более производительный и позволяет эффективно воздействовать на жидкую металлическую ванну (перемешивать, поддерживать, перемещать).

Вертикальные швы выполняют левым способом, а горизонтальные и потолочные – правым. Для лучшего перемешивания металла необходимо конец присадочного прутка погружать в расплавленную ванну и совершать им колебательные движения. Диаметр присадочного прутка выбирают примерно равным свариваемой толщине, но не более 4-5 мм. Присадочный пруток берут того же состава, что и основной металл. Мощность горелки выбирают из расчета 120-150 л/час на 1 мм толщины свариваемого металла. При сварке листов разной толщины мощность горелки выбирают по большей толщине.

Легированные стали и цветные металлы сваривают с применением флюсов, соответствующих составов.

1.3.5 Оборудование сварочного поста

Устройство сварочного поста может отличаться только способом поставки ацетилена:

Поставка ацетилена в баллоне;

Выработка ацетилена на месте сварки в газогенераторе.

На рисунке 17 представлен первый вариант схемы сварочного поста.