Мощный регулируемый стабилизатор напряжения с защитой по току. Регулируемый стабилизатор напряжения с регулируемым ограничением выходного тока. Виды стабилизирующих устройств

От значения КПД зависит эффективность работы стабилизатора - чем он выше, тем лучше. У разных моделей параметр находится в диапазоне от 80 до 90%. Самый высокий КПД присущ электромеханическим моделям и достигает 97%. При небольшом энергопотреблении они способны поддерживать работу потребителей с высокой суммарной мощностью.

Габариты и тип установки

Большинство стабилизаторов рассчитаны на напольную установку, так как массивные модели имеют габариты более 1 м в длину и ширину. Небольшие бытовые устройства могут крепиться к стене . Они имеют тонкий корпус, толщина которого, как правило, составляет не более 8 – 10 см.

Конструктивные особенности

При покупке стабилизатора следует обратить внимание на класс защиты от воды. Если нет риска попадания влаги, можно приобрести модель в негерметизированном корпусе (IP20). Когда есть вероятность попадания воды, выбирают стабилизаторы во влагозащитном исполнении (от IP21 до IP24). Если прибор предполагается использовать на улице или в неотапливаемом помещении, выбирают стабилизатор в климатическом исполнении – его корпус выдерживает минусовые температуры. Модели для установки в отапливаемых помещениях рассчитаны на работу только при плюсовых температурах.
Если стабилизатор будет использоваться в течение длительного времени, ему необходима система охлаждения. Наиболее эффективная - принудительная вентиляция корпуса. С ней такой прибор не будет отключаться из-за перегрева. У многих моделей охлаждение пассивное - это оправдано, когда оборудование рассчитано на кратковременные рабочие циклы.

Контрольные и защитные системы

Стабилизатор контролирует напряжение на входе и выходе , его значения выводятся на панель, где находится механический или электронный вольтметр.
Система автоматического отключения срабатывает при угрозе перегрузки, перегрева или короткого замыкания. Она предотвращает поломки стабилизатора и подключенных к нему приборов.
На панели также предусмотрены два световых индикатора - включения и оповещения об ошибках. Модели со встроенным микропроцессором обеспечивают постоянный контроль рабочих параметров устройства, сети и подключенной нагрузки.

Справочная статья, основанная на экспертном мнении автора.

Содержание:

В электрических цепях постоянно возникает необходимость в стабилизации тех или иных параметров. С этой целью применяются специальные схемы управления и слежения за ними. Точность стабилизирующих действий зависит от так называемого эталона, с которым и сравнивается конкретный параметр, например, напряжение. То есть, когда значение параметра будет ниже эталона, схема стабилизатора напряжения включит управление и отдаст команду на его увеличение. В случае необходимости выполняется обратное действие - на уменьшение.

Данный принцип работы лежит в основе автоматического управления всеми известными устройствами и системами. Точно так же действуют и стабилизаторы напряжения, несмотря на разнообразие схем и элементов, используемых для их создания.

Схема стабилизатора напряжения 220в своими руками

При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.

Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.

За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.

Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.

Для сборки стабилизатора на 220 вольт в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.

Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см2 и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков - 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.

Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм2. За счет этого предотвращается нагрев трансформатора во время работы.

Все остальные комплектующие рекомендуется приобретать в готовом виде, в специализированных магазинах. Основой сборки является принципиальная схема стабилизатора напряжения, заводского изготовления. Вначале устанавливается микросхема, выполняющая функцию контроллера для теплоотвода. Для ее изготовления используется алюминиевая пластина площадью свыше 15 см2. На эту же плату производится монтаж симисторов. Теплоотвод, предназначенный для монтажа, должен быть с охлаждающей поверхностью. После этого сюда же устанавливаются светодиоды в соответствии со схемой или со стороны печатных проводников. Собранная таким образом конструкция, не может сравниваться с заводскими моделями ни по надежности, ни по качеству работы. Такие стабилизаторы используются с бытовыми приборами, не требующими точных параметров тока и напряжения.

Схемы стабилизаторов напряжения на транзисторах

Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе - уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.

В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу . Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.

Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.

Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы - К50-35, резисторы - МЛТ-0,5.

Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому - КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.

Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами - стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) - полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 - 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.

Схема симисторного стабилизатора напряжения 220в

Симисторные стабилизаторы работают по аналогии с релейными устройствами. Существенным отличием является наличие узла, переключающего обмотки трансформатора. Вместо реле используются мощные симисторы, работающие под управлением контроллеров.

Управление обмотками с помощью симисторов - бесконтактное, поэтому при переключениях нет характерных щелчков. Для намотки автотрансформатора используется медный провод. Симисторные стабилизаторы могут работать при пониженном напряжении от 90 вольт и высоком - до 300 вольт. Регулировка напряжения осуществляется с точностью до 2%, отчего лампы совершенно не моргают. Однако во время переключений возникает ЭДС самоиндукции, как и в релейных устройствах.

Симисторные ключи обладают повышенной чувствительностью к перегрузкам, в связи с чем они должны иметь запас по мощности. Данный тип стабилизаторов отличается очень сложным температурным режимом. Поэтому установка симисторов осуществляется на радиаторы с принудительным вентиляторным охлаждением. Точно так же работает схема тиристорного стабилизатора напряжения 220В своими руками.

Существуют устройства с повышенной точностью, работающие по двухступенчатой системе. На первой ступени выполняется грубая регулировка выходного напряжения, а на второй ступени этот процесс осуществляется значительно точнее. Таким образом, управление двумя ступенями выполняется с помощью одного контроллера, что фактически означает наличие двух стабилизаторов в едином корпусе. Обе ступени имеют обмотки, намотанные в общем трансформаторе. При наличии 12 ключей, эти две ступени позволяют регулировать выходное напряжение в 36 уровнях, чем и обеспечивается его высокая точность.

Стабилизатор напряжения с защитой по току схема

Данные устройства обеспечивают питание преимущественно для низковольтных устройств. Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита.
Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.

Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается. Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения. В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току. Для того чтобы установить точный порог срабатывания токовой защиты, применяется подстроечный резистор R3, включаемый параллельно с резистором R2. Красный цвет светодиода LED1 указывает на срабатывание защиты, а зеленый LED2 - на выходное напряжение.

После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2. Например, при R2 равном 0,1 Ом, минимальный ток срабатывания защиты будет составлять около 8А. Если же нужно, наоборот, увеличить ток нагрузки, следует параллельно включить два и более транзисторов, в эмиттерах которых имеются выравнивающие резисторы.

Схема релейного стабилизатора напряжения 220

С помощью релейного стабилизатора обеспечивается надежная защита приборов и других электронных устройств, для которых стандартный уровень напряжения составляет 220В. Данный стабилизатор напряжения 220В, схема которого всем известна. Пользуется широкой популярностью, благодаря простоте своей конструкции.

Для того чтобы правильно эксплуатировать это устройство, необходимо изучить его устройство и принцип действия. Каждый релейный стабилизатор состоит из автоматического трансформатора и электронной схемы, управляющей его работой. Кроме того, имеется реле, помещенное в надежный корпус. Данный прибор относится к категории вольтодобавочных, то есть с его помощью лишь добавляется ток в случае низкого напряжения.

Добавление необходимого количества вольт осуществляется путем подключения обмотки трансформатора. Обычно для работы используется 4 обмотки. В случае слишком высокого тока в электрической сети, трансформатор автоматически уменьшает напряжение до нужного значения. Конструкция может быть дополнена и другими элементами, например, дисплеем.

Таким образом, релейный стабилизатор напряжения имеет очень простой принцип работы. Ток измеряется электронной схемой, затем, после получения результатов, он сравнивается с выходным током. Полученная разница в напряжении регулируется самостоятельно путем подбора необходимой обмотки. Далее, подключается реле и напряжение выходит на необходимый уровень.

Стабилизатор напряжения и тока на LM2576



Предлагаем большой выбор полностью автоматических аппаратов малой и высокой мощности от ведущего производителя «ЭТК Энергия» предназначенные для высокоскоростного устранения некачественного электроснабжения путём выравнивания скачков и просадок в однофазной и трёхфазной сети переменного тока и напряжения. В большинстве случаев наши модели Энергия и Вольтрон относятся к группе сетевых приборов премиум класса, но при этом есть и обычные серии, которые приспособлены решать проблемы в некритических условиях непрерывной эксплуатации. А сегодня мы располагаем хорошим ассортиментом релейных, гибридных, электромеханических и электронных (тиристорных) достойных своего внимания аппаратов. Купить стабилизатор напряжения с защитой по току возможно в Москве, Санкт-Петербурге и регионах. Кроме этой основной задачи по сглаживанию перепадов данные стабилизирующие устройства для электросетей 220В, 380В помогут подавить помехи, качественно поддержат хороший режим работы офисной или бытовой техники при кратковременных перегрузках и обеспечат полную безопасность современных потребителей при коротком замыкании. Для этого в конструкции 1-фазного, а также 3-фазного электрооборудования Энергия и Voltron применяются самые лучшие и надёжные рабочие элементы. Диапазон успешной работоспособности у многих марок составляет 100 … 280 Вольт. Есть также и универсальные высокой точности (погрешность ±3, ±5 процентов) приборы с плавной системой регулировки (Энергия Classic и Ultra 5000, 7500, 9000, 12000, 15000, 20000) способные без особых сложностей стабилизировать подачу электроэнергии от 65В.


Высококачественные стабилизаторы напряжения с защитой по току в нашем интернет магазине представлены самыми востребованными мощностями (2, 3, 5, 8, 10, 15, 20, 30 кВт), которые идеально подходят для круглосуточного применения в офисе, на даче, дома и в промышленных объектах. Гибридные и тиристорные высокоточные модели имеют чистую синусоидальную форму сигнала, благодаря чему успешно функционируют с простой и высокочувствительной электротехникой различного назначения. Среди отечественной сертифицированной продукции для стабилизации переменной сети также представлены к покупке усовершенствованные по технологии морозостойкие устройства, что позволяет безотказно работать при отрицательных температурах. Купить стабилизатор напряжения с защитой по току в Москве, СПБ вы можете через наш официальный сайт по минимальной цене от надёжного производителя. За счёт особого строения корпуса некоторые однофазные российские марки, возможно, установить стандартным напольным вариантом либо использовать более компактный и удобный способ крепления - на стене (настенный). В тех высокоэффективных линейках, где предусмотрено плавное выравнивание заниженного или критически завышенного питания совершенно отсутствует мерцание лампочек, что иногда доставляет небольшие неудобства в жилых домах, квартирах или дачах. По издаваемому во время эксплуатации оборудования уровню шума имеются абсолютно бесшумные и недорогие малошумные сетевые электроприборы. Гарантия на рекомендуемые к покупке аппараты российского производства, широко пользующиеся спросом в России, составляет 1-3 года. Совершенно все серии являются энергосберегающими и оснащены функцией автоматической самодиагностики.

Устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.

Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.

Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики :
Входное напряжение, В - 24...29
Выходное стабилизированное напряжение, В - 1...20 (27)
Ток срабатывания защиты, А - 0,03...2,0

Фото 2. Схема БП

Описание работы БП

Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки - резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.

Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.

Изготовление БП

1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.


Фото 3. Трансформатор и выпрямительный мост.

2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже . Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.


Фото 4. Заготовка корпуса БП

3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.


Фото 5. Монтажная плата

4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.


Фото 6. Узел управления БП

5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.


Фото 7. Микроамперметр, шунт и дополнительное сопротивление

Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:


Фото 8. Схема переключения режима контроля

6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.


Фото 9. Лицевая панель

7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.

Включим в токовую цепь нагрузки специальное сопротивление R T , выполняющего роль преобразователя тока в напряжение. При протекании по сопротивлению тока выделяется напряжение с полярностью, указанной на рисунке 22. Это напряжение воздействует на вход транзистора VT 3. При заданном токе транзистор открывается и берет на себя часть тока базы транзистора VT 1. Последний закрывается и ограничивает ток коллектора. При максимальном токе нагрузки транзистор VT 3 закрыт и не оказывает влияния на работу стабилизатора.

Частое напряжение питания доступно от бортового или встроенного источника питания постоянного тока. Оптимальным решением является использование питания, который может быть подключен к источникам переменного и постоянного тока. Поэтому не забудьте проверить, возможно ли и в какой степени это возможно для данной модели импульсного источника питания.

Укажите количество и значение напряжений, необходимых для питания отдельных цепей или цепей. Очень важно указать требования к точности настройки и точности стабилизации отдельных напряжений. Для оптимизации электропитания важно не излишне увеличивать требования к напряжению постоянного тока. Очевидно, что в случае питания цифровых цепей, процессоров и т.д. эти напряжения должны соответствовать заданным допускам, в прецизионных измерительных системах эти допуски для некоторых напряжений могут быть очень малыми.

1. Выбор токового резистора.

Примем, что защита должна включиться, если ток превышает двойной максимальный ток нагрузки. Примем транзистор VT 3 германиевый n-p-n типа . Напряжение открывания у такого транзистора составляет 0,3 В. (2 I Н max = 0,12 A). Вычисляем величину сопротивления R T .

R T = 0,3 В/0,12 А = 2,5 Ом. Выбираем меньшее номинальное значение

Однако важно, чтобы пользователь не рассматривал напряжения питания в качестве опорных напряжений для целей измерения. Эта частая ошибка часто препятствует эффективному функционированию всего устройства. Очень важно определить взаимную изоляцию между фиксированными выходными напряжениями. В некоторых системах это необходимо, потому что силовые цепи могут быть подключены к разным потенциалам или могут подвергаться помехам от источника питания другим чувствительным частям схемы.

Обратите внимание, что использование гальванической изоляции между выходными напряжениями является дополнительным препятствием и увеличивает стоимость и размеры источника питания и часто исключает точную стабилизацию и более высокие токи нагрузки. Токи нагрузки для отдельных фиксированных напряжений.

2,4 Ом. Вычисляется мощность рассеяния на резисторе и его тип.

2. Транзистор VT 3 можно выбрать любой германиевый n-p-n типа.

U СТ
3.9 Защита нагрузки от перенапряжения

В случае пробоя транзистора VT 1 (рисунок 19) на нагрузку попадает полное напряжение питания, что может вывести ее из строя. Необходима схема защиты нагрузки от возможного перенапряжения. В таких случаях используются быстродействующие электронные схемы защиты рисунок 23. На этой схеме показаны элементы индикации состояния стабилизатора, индикация будет рассмотрена далее.

Это токи, принимаемые отдельной схемой. Оценка значения этих токов имеет решающее значение при выборе правильных модулей питания. На практике намного сложнее определить ток нагрузки, чем требуемое напряжение питания. Ток зависит от многих переменных, таких как.

Условия работы системных допусков компонентов внешних условий системы. . Тем не менее, оценка токов нагрузки необходима для оптимизации питания. Часто используемая пользователями для значительного увеличения спроса на энергоснабжение по сравнению с реальными потребностями увеличивает цену и размеры источников питания. В случае часто используемых импульсных схем питания эта процедура иногда приводит к неспособности устройства работать с источником питания, поскольку простые источники питания импульсных источников питания не работают при слишком низком номинальном токе нагрузки.

Схема защиты состоит из тиристора VS 5, стабилитрона VD 4 и резистора. (Схема защиты по току на схеме не показана). В исходном состоянии тиристор VS 5 закрыт, его управляющий вход подключен к катоду через сопротивление R 2. Стабилитрон VD 4 также закрыт его напряжение включения на 10% больше напряжения нагрузки. Как только напряжение на нагрузке увеличивается по каким-либо причинам, стабилитрон VD 4 открывается, на управляющий электрод тиристора подается напряжение, тиристор открывается и закорачивает входную цепь стабилизатора. После этого сгорает плавкий предохранитель FU .

Также рассмотрим средние и мгновенные значения этих токов. В случае импульсного тока важно определить длительность импульса тока и коэффициента заполнения. Как правило, каждый блок питания способен выдерживать значительные, но кратковременные перегрузки без дополнительного усложнения системы и ненужных негабаритных компонентов.

Чтобы иметь дело с несколькими напряжениями питания, нужно установить связь между токами нагрузки и выяснить, какие из них фиксированы и которые различаются в широком диапазоне. Чем точнее условия энергопотребления, тем легче будет найти наименьший, самый дешевый и надежный источник питания.

1. Сопротивление R 2 ограничивает ток стабилитрона на уровне
5 ÷ 10 мА. Из этих условий выбирается стабилитрон и резистор. В рассматриваемом примере U H = 10 В. Можно использовать стабилитрон КС213В с напряжением включения 13 В (таблица 2). При выходе из строя транзистора VT 1 на стабилитрон VD 4 может поступать минимальное напряжение питания, равное 20 В. Зададимся током стабилитрона равным 5 мА. При пробое стабилитрона к резистору R 2 прикладывается напряжение (20 – 13) = 7 В. Сопротивление R 2 = 7 В/5мА = 1,4 кОм.

Ответьте на изменение нагрузки перехода. Во многих силовых цепях во время включения принимаются импульсные токи и прерывается при отключении. Колебания мощности происходят в таких ситуациях, для которых соответствуют выходной импеданс источника питания и динамические характеристики замкнутого контура стабилизатора напряжения источника. Эти мгновенные изменения напряжения могут во многих случаях нарушать работу других приемников, подключенных к одному и тому же источнику. Правильная идентификация и определение потребления импульсного тока облегчают решение о том, следует ли изолировать напряжение питания, использовать источник питания с лучшими динамическими характеристиками или использовать дополнительные фильтрующие элементы непосредственно в источнике питания.

+ С 2
С 1
+
FU
VD 5
VD 6
R 2
VS 5
R H
VT 1
U И
VD 4
Рис. 23 - Схема защиты нагрузки и индикация
R 4
Ст

R 3

Вычисляется мощность рассеяния на резисторе, выбирается его тип.

Проверим, не превышает ли ток через стабилитрон допустимое значение при максимальном напряжении источника питания равным 27,6 В.
(27,6 – 13) В/1,4 кОм = 10,4 мА, что вполне допустимо для выбранного типа стабилитрона.

2. Выбор тиристора.

Напряжение включения тиристора должно быть больше напряжения питания U И max (параметр U A таблица 5). При выборе тиристора можно ориентироваться следующим условием. Если ток нагрузки меньше 100 мА, то выбирается тиристор с током анода 100 мА и менее. Если ток нагрузки больше 100 мА, то выбирается тиристор с током анода 100 мА и более.

В таких случаях выбор специализированного импульсного источника питания в тесном сотрудничестве с производителем или компетентным торговым представителем обычно дает наилучшие результаты. Подавление помех и пульсаций. Во всех системах электропитания имеется определенная переменная составляющая напряжения, применяемая к правильному выходному напряжению постоянного тока. Причины этого шума и пульсации следующие.

Характер пульсации показан на рисунке. Важно знать о существовании и характере этих рябь, которые в принципе в правильно спроектированных и выполненных источниках питания не превышают нескольких десятков до нескольких сотен мВр-р. Некоторые системы требуют дополнительной фильтрации этих рябь. Однако важно помнить, что чрезмерные требования к пульсации в импульсном источнике питания приводят к значительному увеличению стоимости. В большинстве случаев эффективное ослабление намного проще проводить вблизи компонентов, особенно чувствительных к пульсации и шуму питания.

В примере можно выбрать тиристор КУ101В U А = 50 В, I А = 80 мА.

Выбранные элементы вносятся в перечень элементов схемы.

Индикация состояния стабилизатора

Индикация состояния стабилизатора осуществляется с помощью светодиодов (СИД). Нормальное состояние принято индицировать зеленым или желтым цветом, критическое состояние – красным.

При определении требований к производительности запуска источника питания всегда следует помнить о том, что традиционные системы обычных решений, имеют значительно более низкий уровень пульсации выходного напряжения и, следовательно, часто оптимальное решение для пользователя является использование такого питания, или комбинацию линейных стабилизаторов импульсов, используемых на одном или нескольких выходов Улучшение коэффициента устойчивости и уменьшение уровня пульсаций. Однако важно помнить, что это решение чаще всего связано со значительным сокращением текущего потребления этих выходов и возникновением проблем с дополнительными потерями мощности, приводящими к более высоким температурам.

1. Сопротивление R 4 выбирается исходя из условий минимального тока СИД и минимального напряжения на нем (таблица 6). Выберем светодиод КЛ101А с параметрами I ПР = 10 мА, U ПР = 5,5 В.

R 4 = (U Н – U ПР)/I ПР = 4,5 В/10 мА = 450 Ом. Выбираем ближайшее меньшее номинальное значение резистора. Вычисляется мощность рассеяния на резисторе, выбирается его тип.

Как правило, необходимо использовать дополнительные теплоотводы и структурные гарантии эффективного рассеивания тепла. В частности, в импульсных системах часто бывает, что измерение обременено очень большой ошибкой, вызванной индукцией быстро изменяющихся напряжений в измерительных проводах. Из-за возможности индуцирования помех в проводах, соединяющих выход импульсного источника питания с нагрузкой, рекомендуется использовать системы демпфирования непосредственно вблизи груза.

Здесь также следует отметить, что при определении точности стабилизации выходного напряжения следует учитывать пульсацию выходного напряжения. Часто бывают случаи, когда требования точности к стабилизации среднего значения выходного напряжения значительно ниже уровня реальной пульсации, что совершенно необоснованно.

2. Индикация состояния перегрузки стабилизатора осуществляется с помощью СИД VD 5. В исходном состоянии диод не светится. Если тиристор открывается, то напряжение на нем уменьшается до одного вольта и по СИД потечет ток. Расчет ограничительного сопротивления R 5 аналогичен расчету сопротивления R 4.

СИД выбирается с красным свечением.

Защита от короткого замыкания и перегрузки. Как правило, все токовые, более надежные источники питания защищены от перегрузки или короткого замыкания в выходных цепях. Исключение составляют простые и дешевые источники питания, которые постоянно интегрированы с простыми в использовании и невосприимчивыми силовыми цепями.

Из-за различных методов защиты, используемых в источниках питания, важно понимать, что некоторые из них могут быть несовместимы с требованиями, предъявляемыми нагрузкой. Ниже приведены основные типы функций безопасности и их характеристики. В этом случае в случае перегрузки схема защиты приводит к тому, что источник питания переходит от стабилизатора напряжения к режиму стабилизации выхода на определенном уровне. Этот ток поддерживается постоянными или слегка увеличивающимися значениями независимо от величины перегрузки до тех пор, пока импульсный переключатель не будет закорочен.

3. Плавкий предохранитель FU выбирается на такой ток, чтобы он сработал при допустимом токе тиристора.

4. Для устранения низкочастотных и высокочастотных помех на выходе стабилизатора параллельно нагрузке включаются емкости С 1 = 0,1 мкФ и С 2 = 10 ÷ 20 мкФ.

3.11 Заключение

После проведения всех расчетов и выбора элементов оформляется заключение. В нем отражается задание, т.е. что следовало спроектировать и приводятся параметры стабилизатора К СТ, R ВЫХ и U Иср, полученные в результате проектирования.

Выходные характеристики источника питания с такой защитой показаны на рисунке. Недостатками такого типа защиты являются прежде всего возникновение значительных потерь мощности в импульсной системе питания и высокий ток через цепи нагрузки, что может привести к дальнейшему повреждению.

Однако следует иметь в виду, что этот тип защиты позволяет ИБП надежно подключаться к большинству типов линейных и нелинейных нагрузок, что особенно важно при включении устройств, когда источник питания намного превышает номинальный ток . Этот тип защиты уменьшит выходной ток после превышения допустимого тока нагрузки. Это очень удобно для самого источника питания, поскольку он защищает его от чрезмерных потерь мощности в случае высокой перегрузки или короткого замыкания, но очень часто предотвращает работу источника питания с нелинейной нагрузкой.

3.12 Составление принципиальной схемы стабилизатора

После окончания расчётов отдельных узлов необходимо составить полную принципиальную схему устройства. К схеме рис. 19 добавляется схема защиты рис. 22, рис. 23. Нумерация элементов сквозная, номинальные значения элементов не указываются, стрелки направлений токов и напряжения, тоже не указываются. Схема устройства оформляется на листе формата А3, чертится рамка и основная надпись (штамп) приложение 3.

На рисунке 4 показаны выходные характеристики устройства с такой защитой и гипотетическая рабочая точка, которая может стабилизироваться при попытке включения или в случае кратковременной перегрузки. Этот тип защиты все чаще используется, особенно в импульсных источниках питания, где отключение управления ключами относительно просто. Основным преимуществом этого решения является упрощение конструкции, поскольку нет необходимости прогнозировать долговременную работу ИБП в условиях перегрузки или короткого замыкания.

В то же время, с тепловой защитой от перегрузки, можно интегрировать тепловую защиту, которая также должна отключать источник питания. Основным недостатком защиты при переключении является отсутствие возможности взаимодействия с приемниками, которые временно принимают ток, намного превышающий номинальный, и, следовательно, каждый раз выключают источник питания. Однако эта проблема на практике не является слишком большим препятствием. Как правило, уровень защиты и отключения питания от источника питания намного выше, чем номинальный ток из-за очень короткого времени работы ИБП с высокой перегрузкой.

При вычерчивании принципиальной схемы следует руководствоваться требованиями ГОСТ, с которыми можно ознакомиться в библиотеке. Можно воспользоваться типовой «рисовалкой» Microsoft Word, программами SPlan, Компас или Electronics Workbench.

Если схема выполняется на компьютере, то можно разделить её на две части, распечатать на двух листах А4 и затем склеить.

Во-вторых, он обычно отключается через несколько десятков или сотен миллисекунд, когда импульсный источник питания обычно работает в режиме, аналогичном текущей стабилизации. Если перегрузка уходит в течение этого периода времени, то, очевидно, выключение не произойдет. Часто источники питания с защитой от взлома включаются автоматически через короткий промежуток времени, и если условие перегрузки или короткого замыкания запущено, они начнут нормально работать. Во многих случаях такое поведение источника питания является достаточным и не представляет проблемы для пользователя.

Принципиальная схема должна сопровождаться перечнем элементов – спецификацией, выполняемой в соответствии с ГОСТ (приложение 4). Если позволяет место на листе А3, то таблицу с перечнем элементов можно поместить над основной надписью чертежа.


ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ РАБОТЫ

4.1 Оформление работы

Курсовая работа должна быть оформлена в виде пояснительной записки, выполненной на листах формата А4 компьютерным или рукописным способом.

По всем четырём сторонам листа записки должны оставаться поля слева – 25 мм, кругом по 10 мм.

Листы пояснительной записки должны быть скреплены в двух – трёх точках на расстоянии 10 мм от левого края листа. Использование скрепок и пластиковых конвертов (файлов) не допускается.

Пояснительная записка обязательно должна включать условие задачи, размещаемой на втором листе (номер варианта указывается на титульном листе). Расчётные принципиальные схемы в пояснительной записке должны быть выполнены обязательно по трафарету. Схемы в тексте являются рисунками и должны иметь сквозную нумерацию и подрисуночные подписи.

Все буквенные обозначения физических величин должны быть указаны на рисунке или пояснены в тексте.

Расчёт численных значений физических величин должен быть оформлен следующим образом: после расчётной формулы, записанной в буквенных обозначениях , в неё подставляют численные значения величин, а затем приводят результат вычислений и обозначение единицы физической величины без скобок. Обязательно проставляется размерность полученной величины. Если хотя бы одна величина, входящая в формулу имеет три значащие цифры, то результат должен иметь также три значащие цифры. В качестве примера оформления расчетной формулы можно обратиться к формуле расчета коэффициента стабилизации К СТ.

Работы, сдаваемые на проверку, должны быть выполнены в полном объёме, приведён список использованной литературы, справочников.

Исправления следует вносить путём зачёркивания неправильного результата и вписывания правильного выше или правее неправильного. Если работа переоформлена полностью, то предыдущий вариант работы с замечаниями преподавателя должен быть вложен в исправленный текст (за исключением титульного листа, который должен быть перенесён на исправленный текст).

Пример оформления титульного листа записки приведён в приложении 2. Титульный лист является страницей номер 1, но номер не проставляется. Длинный номер под заголовком обозначает следующее. Первая позиция – номер учебной специальности, следующие две позиции в учебных проектах не заполняются, предпоследняя позиция – две последние цифры номера студенческого билета или зачётной книжки, последняя позиция – ПЗ – шифр документа – пояснительная записка.

В основной надписи принципиальной схемы эта позиция обозначается Э3 – обозначающую схему электрическую принципиальную.

В приложении приводятся вольт-амперные характеристики транзисторов, которые использовались в ходе расчётов. Эти характеристики можно скопировать из электронной версии пособия или из интернета и поместить в текст пояснительной записки.

4.2 Таблица выбора варианта и данных для расчета стабилизатора

Номер варианта выбирается по порядковому номеру студента в журнале группы.

Изменение напряжения источника питания составляет ±15% для всех вариантов.

Таблица 1.

№ Вар. U СТ В I H mA ∆t 0 C Материал транзистора К СТ не менее ТКН % от U СТ
50±20% Si менее 1%
90±20% Si менее 1%
60±40% Ge менее 0,5%
70±20% Si менее 0,9%
80±30% Ge менее 0,5%
82±20% Si менее 1%
96±30% Ge менее 0,5%
50±40% Si менее 0,8%
90±20% Ge менее 0,5%
40±40% Si менее 1%
60±40% Ge менее 0,6%
80±30% Si менее 1%
70±20% Ge менее 0,9%
90±40% Si менее 0,9%
100±40% Si менее 0,7%
92±40% Ge менее 1%
80±20% Si менее 0,5%
60±30% Ge менее 1%
88±40% Si менее 0,8%
90±30% Ge менее 0,4%
50±20% Si менее 0,5%
40±40% Ge менее 1%
60±40% Si менее 0,5%
80±20% Ge менее 1%
120±10% Si менее 0,4%
70±40% Ge менее 0,8%
90±30% Si менее 0,5%

Таблица 1. Продолжение.


5. СПРАВОЧНЫЙ РАЗДЕЛ

5.1 Определение площади радиатора

Si

Стабилизатор тока для светодиодов применяется во многих светильниках. Как и всем диодам, LED присуще нелинейная вольт-амперная зависимость. Что это значит? При повышении напряжения, сила тока медленно начинает набирать мощь. И только при достижении порогового значения, яркость светодиода становится насыщенной. Однако если ток не перестанет расти, то лампа может сгореть.

Правильная работа LED может быть обеспечена только благодаря стабилизатору. Эта защита необходима еще и по причине разброса пороговых значений напряжения светодиода. При подключении по параллельной схеме лампочки могут просто на просто сгореть, так как им приходится пропускать недопустимую для них величину тока.

Виды стабилизирующих устройств

По способу ограничения силы тока выделяются устройства линейного и импульсного типа.

Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.

Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:

  • отсутствием электромагнитных помех;
  • простотой;
  • низкой стоимостью.

Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя . В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.

Схемы линейных устройств

Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.

Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок питания, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.

Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.

Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.

Каждый вывод микросхемы имеет свое предназначение:

  • ADJUST. Ввод для регулирования выходного напряжения.
  • OUTPUT. Ввод для формирования выходного напряжения.
  • INPUT. Ввод для подачи питающего напряжения.

Технические показатели стабилизатора:

  • Напряжение на выходе в пределах 1,2–37 В.
  • Защита от перегрузки и КЗ.
  • Погрешность выходного напряжения 0,1%.
  • Схема включения с регулируемым выходным напряжением.

Мощность рассеяния и входное напряжение устройства

Максимальная «планка» входного напряжения должна быть не более заданной, а минимальная – выше желаемой выходной на 2 В.

Микросхема рассчитана на стабильную работу при максимальном токе до 1,5 А. Это значение будет ниже, если не применять качественный теплоотвод. Максимально допустимое рассеивание мощности без последнего равно примерно 1,5 Вт при температуре окружающей среды не более 30 0 С.

При установке микросхемы требуется изоляция корпуса от радиатора, к примеру, с помощью слюдяной прокладки. Также эффективный отвод тепла достигается путём применения теплопроводной пасты.

Краткое описание

Коротко описать достоинства радиоэлектронного модуля LM317, применяемого в стабилизаторах тока, можно так:

  • яркость светового потока обеспечивается диапазоном выходного напряжения 1, – 37 В;
  • выходные показатели модуля не зависят от частоты вращения вала электродвигателя;
  • поддерживание выходного тока до 1,5 А позволяет подключать несколько электроприёмников;
  • погрешность колебаний выходных параметров равна 0,1% от номинального значения , что является гарантией высокой стабильности;
  • имеется функция защиты по ограничению тока и каскадного отключения при перегреве;
  • корпус микросхемы заменяет землю, поэтому при внешнем креплении уменьшается количество монтажных кабелей.

Схемы включения

Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.

1. Простейший стабилизированный блок питания

Чтобы сделать стабилизатор тока потребуется:

Микросхемка LM317;

Резистор;

Монтажные средства.

Собираем модель по нижеприведенной схеме:


Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.

2. Блок питания на интегральном стабилизаторе

Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.


Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.

3. Схема стабилизатора с регулируемым блоком питания

Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.


Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.

Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.

Область применения

Микросхема LM317 является отличным вариантом для использования в режиме стабилизации основных технических показателей. Она отличается простотой в исполнении, недорогой стоимостью и отличными эксплуатационными характеристиками. Единственный недостаток – пороговое значение напряжения составляет лишь 3 В. Корпус в стиле ТО220 – это одна из самых доступных моделей, которая позволяет рассеивать тепло довольно хорошо.

Микросхема применима в устройствах:

  • стабилизатор тока для LED (в том числе для LED-лент);
  • Регулируемый.

Стабилизирующая схема, построенная на основе LM317 простая, дешёвая, и в то же время надежная.